retinanet.py 13.5 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14
15

# Lint as: python3
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16
17
18
"""RetinaNet configuration definition."""

import os
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
19
from typing import List, Optional
Abdullah Rashwan's avatar
Abdullah Rashwan committed
20
import dataclasses
Abdullah Rashwan's avatar
Abdullah Rashwan committed
21

22
from official.core import config_definitions as cfg
Abdullah Rashwan's avatar
Abdullah Rashwan committed
23
24
25
26
27
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.vision.beta.configs import common
from official.vision.beta.configs import decoders
Abdullah Rashwan's avatar
Abdullah Rashwan committed
28
from official.vision.beta.configs import backbones
Abdullah Rashwan's avatar
Abdullah Rashwan committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71


# pylint: disable=missing-class-docstring
@dataclasses.dataclass
class TfExampleDecoder(hyperparams.Config):
  regenerate_source_id: bool = False


@dataclasses.dataclass
class TfExampleDecoderLabelMap(hyperparams.Config):
  regenerate_source_id: bool = False
  label_map: str = ''


@dataclasses.dataclass
class DataDecoder(hyperparams.OneOfConfig):
  type: Optional[str] = 'simple_decoder'
  simple_decoder: TfExampleDecoder = TfExampleDecoder()
  label_map_decoder: TfExampleDecoderLabelMap = TfExampleDecoderLabelMap()


@dataclasses.dataclass
class Parser(hyperparams.Config):
  num_channels: int = 3
  match_threshold: float = 0.5
  unmatched_threshold: float = 0.5
  aug_rand_hflip: bool = False
  aug_scale_min: float = 1.0
  aug_scale_max: float = 1.0
  skip_crowd_during_training: bool = True
  max_num_instances: int = 100


@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """Input config for training."""
  input_path: str = ''
  global_batch_size: int = 0
  is_training: bool = False
  dtype: str = 'bfloat16'
  decoder: DataDecoder = DataDecoder()
  parser: Parser = Parser()
  shuffle_buffer_size: int = 10000
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
72
  file_type: str = 'tfrecord'
Abdullah Rashwan's avatar
Abdullah Rashwan committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91


@dataclasses.dataclass
class Anchor(hyperparams.Config):
  num_scales: int = 3
  aspect_ratios: List[float] = dataclasses.field(
      default_factory=lambda: [0.5, 1.0, 2.0])
  anchor_size: float = 4.0


@dataclasses.dataclass
class Losses(hyperparams.Config):
  focal_loss_alpha: float = 0.25
  focal_loss_gamma: float = 1.5
  huber_loss_delta: float = 0.1
  box_loss_weight: int = 50
  l2_weight_decay: float = 0.0


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
92
93
94
95
96
97
98
@dataclasses.dataclass
class AttributeHead(hyperparams.Config):
  name: str = ''
  type: str = 'regression'
  size: int = 1


Abdullah Rashwan's avatar
Abdullah Rashwan committed
99
100
101
102
103
@dataclasses.dataclass
class RetinaNetHead(hyperparams.Config):
  num_convs: int = 4
  num_filters: int = 256
  use_separable_conv: bool = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
104
  attribute_heads: Optional[List[AttributeHead]] = None
Abdullah Rashwan's avatar
Abdullah Rashwan committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139


@dataclasses.dataclass
class DetectionGenerator(hyperparams.Config):
  pre_nms_top_k: int = 5000
  pre_nms_score_threshold: float = 0.05
  nms_iou_threshold: float = 0.5
  max_num_detections: int = 100
  use_batched_nms: bool = False


@dataclasses.dataclass
class RetinaNet(hyperparams.Config):
  num_classes: int = 0
  input_size: List[int] = dataclasses.field(default_factory=list)
  min_level: int = 3
  max_level: int = 7
  anchor: Anchor = Anchor()
  backbone: backbones.Backbone = backbones.Backbone(
      type='resnet', resnet=backbones.ResNet())
  decoder: decoders.Decoder = decoders.Decoder(
      type='fpn', fpn=decoders.FPN())
  head: RetinaNetHead = RetinaNetHead()
  detection_generator: DetectionGenerator = DetectionGenerator()
  norm_activation: common.NormActivation = common.NormActivation()


@dataclasses.dataclass
class RetinaNetTask(cfg.TaskConfig):
  model: RetinaNet = RetinaNet()
  train_data: DataConfig = DataConfig(is_training=True)
  validation_data: DataConfig = DataConfig(is_training=False)
  losses: Losses = Losses()
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: str = 'all'  # all or backbone
Zhenyu Tan's avatar
Zhenyu Tan committed
140
  annotation_file: Optional[str] = None
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
141
  per_category_metrics: bool = False
Abdullah Rashwan's avatar
Abdullah Rashwan committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155


@exp_factory.register_config_factory('retinanet')
def retinanet() -> cfg.ExperimentConfig:
  """RetinaNet general config."""
  return cfg.ExperimentConfig(
      task=RetinaNetTask(),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])


COCO_INPUT_PATH_BASE = 'coco'
156
COCO_TRAIN_EXAMPLES = 118287
Abdullah Rashwan's avatar
Abdullah Rashwan committed
157
158
159
160
161
162
163
164
COCO_VAL_EXAMPLES = 5000


@exp_factory.register_config_factory('retinanet_resnetfpn_coco')
def retinanet_resnetfpn_coco() -> cfg.ExperimentConfig:
  """COCO object detection with RetinaNet."""
  train_batch_size = 256
  eval_batch_size = 8
165
  steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
Abdullah Rashwan's avatar
Abdullah Rashwan committed
166
167
168
169
170
171

  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=RetinaNetTask(
          init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/resnet50_imagenet/ckpt-28080',
          init_checkpoint_modules='backbone',
Zhenyu Tan's avatar
Zhenyu Tan committed
172
173
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
          model=RetinaNet(
              num_classes=91,
              input_size=[640, 640, 3],
              min_level=3,
              max_level=7),
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size,
              parser=Parser(
                  aug_rand_hflip=True, aug_scale_min=0.5, aug_scale_max=2.0)),
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          train_steps=72 * steps_per_epoch,
          validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
                          57 * steps_per_epoch, 67 * steps_per_epoch
                      ],
                      'values': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
211
212
213
                          0.32 * train_batch_size / 256.0,
                          0.032 * train_batch_size / 256.0,
                          0.0032 * train_batch_size / 256.0
Abdullah Rashwan's avatar
Abdullah Rashwan committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
                      ],
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 500,
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config


@exp_factory.register_config_factory('retinanet_spinenet_coco')
def retinanet_spinenet_coco() -> cfg.ExperimentConfig:
  """COCO object detection with RetinaNet using SpineNet backbone."""
  train_batch_size = 256
  eval_batch_size = 8
238
  steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
Abdullah Rashwan's avatar
Abdullah Rashwan committed
239
240
241
242
243
  input_size = 640

  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='float32'),
      task=RetinaNetTask(
Zhenyu Tan's avatar
Zhenyu Tan committed
244
245
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
246
247
248
          model=RetinaNet(
              backbone=backbones.Backbone(
                  type='spinenet',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
249
250
                  spinenet=backbones.SpineNet(
                      model_id='49', stochastic_depth_drop_rate=0.2)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
251
252
253
              decoder=decoders.Decoder(
                  type='identity', identity=decoders.Identity()),
              anchor=Anchor(anchor_size=3),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
254
255
              norm_activation=common.NormActivation(
                  use_sync_bn=True, activation='swish'),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
256
257
258
259
260
261
262
263
264
265
              num_classes=91,
              input_size=[input_size, input_size, 3],
              min_level=3,
              max_level=7),
          losses=Losses(l2_weight_decay=4e-5),
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size,
              parser=Parser(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
266
                  aug_rand_hflip=True, aug_scale_min=0.1, aug_scale_max=2.0)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
267
268
269
270
271
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
272
          train_steps=500 * steps_per_epoch,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
          validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
289
                          475 * steps_per_epoch, 490 * steps_per_epoch
Abdullah Rashwan's avatar
Abdullah Rashwan committed
290
291
                      ],
                      'values': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
292
293
294
                          0.32 * train_batch_size / 256.0,
                          0.032 * train_batch_size / 256.0,
                          0.0032 * train_batch_size / 256.0
Abdullah Rashwan's avatar
Abdullah Rashwan committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
                      ],
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 2000,
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333


@exp_factory.register_config_factory('retinanet_spinenet_mobile_coco')
def retinanet_spinenet_mobile_coco() -> cfg.ExperimentConfig:
  """COCO object detection with RetinaNet using Mobile SpineNet backbone."""
  train_batch_size = 256
  eval_batch_size = 8
  steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
  input_size = 384

  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='float32'),
      task=RetinaNetTask(
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
          model=RetinaNet(
              backbone=backbones.Backbone(
                  type='spinenet_mobile',
                  spinenet_mobile=backbones.SpineNetMobile(
                      model_id='49', stochastic_depth_drop_rate=0.2)),
              decoder=decoders.Decoder(
                  type='identity', identity=decoders.Identity()),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
334
              head=RetinaNetHead(num_filters=48, use_separable_conv=True),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
335
336
337
338
339
340
341
              anchor=Anchor(anchor_size=3),
              norm_activation=common.NormActivation(
                  use_sync_bn=True, activation='swish'),
              num_classes=91,
              input_size=[input_size, input_size, 3],
              min_level=3,
              max_level=7),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
342
          losses=Losses(l2_weight_decay=3e-5),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size,
              parser=Parser(
                  aug_rand_hflip=True, aug_scale_min=0.1, aug_scale_max=2.0)),
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          train_steps=600 * steps_per_epoch,
          validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
                          575 * steps_per_epoch, 590 * steps_per_epoch
                      ],
                      'values': [
                          0.32 * train_batch_size / 256.0,
                          0.032 * train_batch_size / 256.0,
                          0.0032 * train_batch_size / 256.0
                      ],
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 2000,
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config