mobilenet.py 32.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Fan Yang's avatar
Fan Yang committed
15
"""Contains definitions of MobileNet Networks."""
16

Fan Yang's avatar
Fan Yang committed
17
from typing import Optional, Dict, Any, Tuple
18
19

# Import libraries
20
import dataclasses
21
import tensorflow as tf
22
from official.modeling import hyperparams
23
from official.modeling import tf_utils
Shixin Luo's avatar
Shixin Luo committed
24
from official.vision.beta.modeling.backbones import factory
25
26
27
28
29
30
from official.vision.beta.modeling.layers import nn_blocks
from official.vision.beta.modeling.layers import nn_layers

layers = tf.keras.layers
regularizers = tf.keras.regularizers

31

32
33
34
#  pylint: disable=pointless-string-statement


35
36
class Conv2DBNBlock(tf.keras.layers.Layer):
  """A convolution block with batch normalization."""
37

38
39
40
41
42
43
  def __init__(
      self,
      filters: int,
      kernel_size: int = 3,
      strides: int = 1,
      use_bias: bool = False,
Fan Yang's avatar
Fan Yang committed
44
45
      activation: str = 'relu6',
      kernel_initializer: str = 'VarianceScaling',
46
47
48
49
50
51
52
      kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      bias_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      use_normalization: bool = True,
      use_sync_bn: bool = False,
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      **kwargs):
53
    """A convolution block with batch normalization.
54

55
    Args:
Fan Yang's avatar
Fan Yang committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
      filters: An `int` number of filters for the first two convolutions. Note
        that the third and final convolution will use 4 times as many filters.
      kernel_size: An `int` specifying the height and width of the 2D
        convolution window.
      strides: An `int` of block stride. If greater than 1, this block will
        ultimately downsample the input.
      use_bias: If True, use bias in the convolution layer.
      activation: A `str` name of the activation function.
      kernel_initializer: A `str` for kernel initializer of convolutional
        layers.
      kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      bias_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D.
        Default to None.
      use_normalization: If True, use batch normalization.
      use_sync_bn: If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      **kwargs: Additional keyword arguments to be passed.
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    """
    super(Conv2DBNBlock, self).__init__(**kwargs)
    self._filters = filters
    self._kernel_size = kernel_size
    self._strides = strides
    self._activation = activation
    self._use_bias = use_bias
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    self._use_normalization = use_normalization
    self._use_sync_bn = use_sync_bn
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
89

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    if use_sync_bn:
      self._norm = tf.keras.layers.experimental.SyncBatchNormalization
    else:
      self._norm = tf.keras.layers.BatchNormalization
    if tf.keras.backend.image_data_format() == 'channels_last':
      self._bn_axis = -1
    else:
      self._bn_axis = 1
    self._activation_fn = tf_utils.get_activation(activation)

  def get_config(self):
    config = {
        'filters': self._filters,
        'strides': self._strides,
        'kernel_size': self._kernel_size,
        'use_bias': self._use_bias,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
        'activation': self._activation,
        'use_sync_bn': self._use_sync_bn,
        'use_normalization': self._use_normalization,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon
    }
    base_config = super(Conv2DBNBlock, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def build(self, input_shape):
    self._conv0 = tf.keras.layers.Conv2D(
        filters=self._filters,
        kernel_size=self._kernel_size,
        strides=self._strides,
        padding='same',
        use_bias=self._use_bias,
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer)
    if self._use_normalization:
      self._norm0 = self._norm(
          axis=self._bn_axis,
          momentum=self._norm_momentum,
          epsilon=self._norm_epsilon)

    super(Conv2DBNBlock, self).build(input_shape)

  def call(self, inputs, training=None):
    x = self._conv0(inputs)
    if self._use_normalization:
      x = self._norm0(x)
    return self._activation_fn(x)
141
142
143
144

"""
Architecture: https://arxiv.org/abs/1704.04861.

145
146
147
"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications" Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam
148
149
150
"""
MNV1_BLOCK_SPECS = {
    'spec_name': 'MobileNetV1',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
151
152
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides',
                          'filters', 'is_output'],
153
    'block_specs': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        ('convbn', 3, 2, 32, False),
        ('depsepconv', 3, 1, 64, False),
        ('depsepconv', 3, 2, 128, False),
        ('depsepconv', 3, 1, 128, True),
        ('depsepconv', 3, 2, 256, False),
        ('depsepconv', 3, 1, 256, True),
        ('depsepconv', 3, 2, 512, False),
        ('depsepconv', 3, 1, 512, False),
        ('depsepconv', 3, 1, 512, False),
        ('depsepconv', 3, 1, 512, False),
        ('depsepconv', 3, 1, 512, False),
        ('depsepconv', 3, 1, 512, True),
        ('depsepconv', 3, 2, 1024, False),
        ('depsepconv', 3, 1, 1024, True),
168
169
170
171
172
173
174
175
176
177
178
179
    ]
}

"""
Architecture: https://arxiv.org/abs/1801.04381

"MobileNetV2: Inverted Residuals and Linear Bottlenecks"
Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen
"""
MNV2_BLOCK_SPECS = {
    'spec_name': 'MobileNetV2',
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
180
                          'expand_ratio', 'is_output'],
181
    'block_specs': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        ('convbn', 3, 2, 32, None, False),
        ('invertedbottleneck', 3, 1, 16, 1., False),
        ('invertedbottleneck', 3, 2, 24, 6., False),
        ('invertedbottleneck', 3, 1, 24, 6., True),
        ('invertedbottleneck', 3, 2, 32, 6., False),
        ('invertedbottleneck', 3, 1, 32, 6., False),
        ('invertedbottleneck', 3, 1, 32, 6., True),
        ('invertedbottleneck', 3, 2, 64, 6., False),
        ('invertedbottleneck', 3, 1, 64, 6., False),
        ('invertedbottleneck', 3, 1, 64, 6., False),
        ('invertedbottleneck', 3, 1, 64, 6., False),
        ('invertedbottleneck', 3, 1, 96, 6., False),
        ('invertedbottleneck', 3, 1, 96, 6., False),
        ('invertedbottleneck', 3, 1, 96, 6., True),
        ('invertedbottleneck', 3, 2, 160, 6., False),
        ('invertedbottleneck', 3, 1, 160, 6., False),
        ('invertedbottleneck', 3, 1, 160, 6., False),
        ('invertedbottleneck', 3, 1, 320, 6., True),
        ('convbn', 1, 1, 1280, None, False),
201
202
203
204
205
206
207
    ]
}

"""
Architecture: https://arxiv.org/abs/1905.02244

"Searching for MobileNetV3"
208
Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan,
209
210
211
212
213
214
Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam
"""
MNV3Large_BLOCK_SPECS = {
    'spec_name': 'MobileNetV3Large',
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
                          'activation', 'se_ratio', 'expand_ratio',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
215
                          'use_normalization', 'use_bias', 'is_output'],
216
    'block_specs': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        ('convbn', 3, 2, 16,
         'hard_swish', None, None, True, False, False),
        ('invertedbottleneck', 3, 1, 16,
         'relu', None, 1., None, False, False),
        ('invertedbottleneck', 3, 2, 24,
         'relu', None, 4., None, False, False),
        ('invertedbottleneck', 3, 1, 24,
         'relu', None, 3., None, False, True),
        ('invertedbottleneck', 5, 2, 40,
         'relu', 0.25, 3., None, False, False),
        ('invertedbottleneck', 5, 1, 40,
         'relu', 0.25, 3., None, False, False),
        ('invertedbottleneck', 5, 1, 40,
         'relu', 0.25, 3., None, False, True),
        ('invertedbottleneck', 3, 2, 80,
         'hard_swish', None, 6., None, False, False),
        ('invertedbottleneck', 3, 1, 80,
         'hard_swish', None, 2.5, None, False, False),
        ('invertedbottleneck', 3, 1, 80,
         'hard_swish', None, 2.3, None, False, False),
        ('invertedbottleneck', 3, 1, 80,
         'hard_swish', None, 2.3, None, False, False),
        ('invertedbottleneck', 3, 1, 112,
         'hard_swish', 0.25, 6., None, False, False),
        ('invertedbottleneck', 3, 1, 112,
         'hard_swish', 0.25, 6., None, False, True),
        ('invertedbottleneck', 5, 2, 160,
         'hard_swish', 0.25, 6., None, False, False),
        ('invertedbottleneck', 5, 1, 160,
         'hard_swish', 0.25, 6., None, False, False),
        ('invertedbottleneck', 5, 1, 160,
         'hard_swish', 0.25, 6., None, False, True),
        ('convbn', 1, 1, 960,
         'hard_swish', None, None, True, False, False),
        ('gpooling', None, None, None,
         None, None, None, None, None, False),
        ('convbn', 1, 1, 1280,
         'hard_swish', None, None, False, True, False),
255
256
257
258
259
260
261
    ]
}

MNV3Small_BLOCK_SPECS = {
    'spec_name': 'MobileNetV3Small',
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
                          'activation', 'se_ratio', 'expand_ratio',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
262
                          'use_normalization', 'use_bias', 'is_output'],
263
    'block_specs': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
        ('convbn', 3, 2, 16,
         'hard_swish', None, None, True, False, False),
        ('invertedbottleneck', 3, 2, 16,
         'relu', 0.25, 1, None, False, True),
        ('invertedbottleneck', 3, 2, 24,
         'relu', None, 72. / 16, None, False, False),
        ('invertedbottleneck', 3, 1, 24,
         'relu', None, 88. / 24, None, False, True),
        ('invertedbottleneck', 5, 2, 40,
         'hard_swish', 0.25, 4., None, False, False),
        ('invertedbottleneck', 5, 1, 40,
         'hard_swish', 0.25, 6., None, False, False),
        ('invertedbottleneck', 5, 1, 40,
         'hard_swish', 0.25, 6., None, False, False),
        ('invertedbottleneck', 5, 1, 48,
         'hard_swish', 0.25, 3., None, False, False),
        ('invertedbottleneck', 5, 1, 48,
         'hard_swish', 0.25, 3., None, False, True),
        ('invertedbottleneck', 5, 2, 96,
         'hard_swish', 0.25, 6., None, False, False),
        ('invertedbottleneck', 5, 1, 96,
         'hard_swish', 0.25, 6., None, False, False),
        ('invertedbottleneck', 5, 1, 96,
         'hard_swish', 0.25, 6., None, False, True),
        ('convbn', 1, 1, 576,
         'hard_swish', None, None, True, False, False),
        ('gpooling', None, None, None,
         None, None, None, None, None, False),
        ('convbn', 1, 1, 1024,
         'hard_swish', None, None, False, True, False),
294
295
296
297
298
299
300
301
302
303
304
    ]
}

"""
The EdgeTPU version is taken from
github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v3.py
"""
MNV3EdgeTPU_BLOCK_SPECS = {
    'spec_name': 'MobileNetV3EdgeTPU',
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
                          'activation', 'se_ratio', 'expand_ratio',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
305
                          'use_residual', 'use_depthwise', 'is_output'],
306
    'block_specs': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
        ('convbn', 3, 2, 32, 'relu', None, None, None, None, False),
        ('invertedbottleneck', 3, 1, 16, 'relu', None, 1., True, False, False),
        ('invertedbottleneck', 3, 2, 32, 'relu', None, 8., True, False, False),
        ('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False, False),
        ('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False, False),
        ('invertedbottleneck', 3, 1, 32, 'relu', None, 4., True, False, True),
        ('invertedbottleneck', 3, 2, 48, 'relu', None, 8., True, False, False),
        ('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False, False),
        ('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False, False),
        ('invertedbottleneck', 3, 1, 48, 'relu', None, 4., True, False, True),
        ('invertedbottleneck', 3, 2, 96, 'relu', None, 8., True, True, False),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 8., False, True, False),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 3, 1, 96, 'relu', None, 4., True, True, True),
        ('invertedbottleneck', 5, 2, 160, 'relu', None, 8., True, True, False),
        ('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 5, 1, 160, 'relu', None, 4., True, True, False),
        ('invertedbottleneck', 3, 1, 192, 'relu', None, 8., True, True, True),
        ('convbn', 1, 1, 1280, 'relu', None, None, None, None, False),
331
332
333
    ]
}

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
334
335
336
337
338
339
340
341
342
343
344
345
"""
Architecture: https://arxiv.org/pdf/2008.08178.pdf

"Discovering Multi-Hardware Mobile Models via Architecture Search"
Grace Chu, Okan Arikan, Gabriel Bender, Weijun Wang,
Achille Brighton, Pieter-Jan Kindermans, Hanxiao Liu,
Berkin Akin, Suyog Gupta, and Andrew Howard
"""
MNMultiMAX_BLOCK_SPECS = {
    'spec_name': 'MobileNetMultiMAX',
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
                          'activation', 'expand_ratio',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
346
                          'use_normalization', 'use_bias', 'is_output'],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
347
    'block_specs': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
        ('convbn', 3, 2, 32, 'relu', None, True, False, False),
        ('invertedbottleneck', 3, 2, 32, 'relu', 3., None, False, True),
        ('invertedbottleneck', 5, 2, 64, 'relu', 6., None, False, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False, True),
        ('invertedbottleneck', 5, 2, 128, 'relu', 6., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 4., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 6., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, True),
        ('invertedbottleneck', 3, 2, 160, 'relu', 6., None, False, False),
        ('invertedbottleneck', 5, 1, 160, 'relu', 4., None, False, False),
        ('invertedbottleneck', 3, 1, 160, 'relu', 5., None, False, False),
        ('invertedbottleneck', 5, 1, 160, 'relu', 4., None, False, True),
        ('convbn', 1, 1, 960, 'relu', None, True, False, False),
        ('gpooling', None, None, None, None, None, None, None, False),
        ('convbn', 1, 1, 1280, 'relu', None, False, True, False),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
366
367
368
369
370
371
372
    ]
}

MNMultiAVG_BLOCK_SPECS = {
    'spec_name': 'MobileNetMultiAVG',
    'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
                          'activation', 'expand_ratio',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
373
                          'use_normalization', 'use_bias', 'is_output'],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
374
    'block_specs': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
        ('convbn', 3, 2, 32, 'relu', None, True, False, False),
        ('invertedbottleneck', 3, 2, 32, 'relu', 3., None, False, False),
        ('invertedbottleneck', 3, 1, 32, 'relu', 2., None, False, True),
        ('invertedbottleneck', 5, 2, 64, 'relu', 5., None, False, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 3., None, False, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 2., None, False, False),
        ('invertedbottleneck', 3, 1, 64, 'relu', 3., None, False, True),
        ('invertedbottleneck', 5, 2, 128, 'relu', 6., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
        ('invertedbottleneck', 3, 1, 128, 'relu', 3., None, False, False),
        ('invertedbottleneck', 3, 1, 160, 'relu', 6., None, False, False),
        ('invertedbottleneck', 3, 1, 160, 'relu', 4., None, False, True),
        ('invertedbottleneck', 3, 2, 192, 'relu', 6., None, False, False),
        ('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False, False),
        ('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False, False),
        ('invertedbottleneck', 5, 1, 192, 'relu', 4., None, False, True),
        ('convbn', 1, 1, 960, 'relu', None, True, False, False),
        ('gpooling', None, None, None, None, None, None, None, False),
        ('convbn', 1, 1, 1280, 'relu', None, False, True, False),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
395
396
397
    ]
}

398
399
400
401
402
403
SUPPORTED_SPECS_MAP = {
    'MobileNetV1': MNV1_BLOCK_SPECS,
    'MobileNetV2': MNV2_BLOCK_SPECS,
    'MobileNetV3Large': MNV3Large_BLOCK_SPECS,
    'MobileNetV3Small': MNV3Small_BLOCK_SPECS,
    'MobileNetV3EdgeTPU': MNV3EdgeTPU_BLOCK_SPECS,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
404
405
    'MobileNetMultiMAX': MNMultiMAX_BLOCK_SPECS,
    'MobileNetMultiAVG': MNMultiAVG_BLOCK_SPECS,
406
407
408
}


409
@dataclasses.dataclass
410
class BlockSpec(hyperparams.Config):
411
412
  """A container class that specifies the block configuration for MobileNet."""

Fan Yang's avatar
Fan Yang committed
413
  block_fn: str = 'convbn'
414
415
416
417
418
  kernel_size: int = 3
  strides: int = 1
  filters: int = 32
  use_bias: bool = False
  use_normalization: bool = True
Fan Yang's avatar
Fan Yang committed
419
  activation: str = 'relu6'
420
421
422
423
424
425
  # used for block type InvertedResConv
  expand_ratio: Optional[float] = 6.
  # used for block type InvertedResConv with SE
  se_ratio: Optional[float] = None
  use_depthwise: bool = True
  use_residual: bool = True
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
426
  is_output: bool = True
427
428


429
430
def block_spec_decoder(specs: Dict[Any, Any],
                       filter_size_scale: float,
431
432
433
                       # set to 1 for mobilenetv1
                       divisible_by: int = 8,
                       finegrain_classification_mode: bool = True):
Fan Yang's avatar
Fan Yang committed
434
  """Decodes specs for a block.
435
436

  Args:
Fan Yang's avatar
Fan Yang committed
437
438
439
440
441
442
    specs: A `dict` specification of block specs of a mobilenet version.
    filter_size_scale: A `float` multiplier for the filter size for all
      convolution ops. The value must be greater than zero. Typical usage will
      be to set this value in (0, 1) to reduce the number of parameters or
      computation cost of the model.
    divisible_by: An `int` that ensures all inner dimensions are divisible by
443
      this number.
Fan Yang's avatar
Fan Yang committed
444
445
446
    finegrain_classification_mode: If True, the model will keep the last layer
      large even for small multipliers, following
      https://arxiv.org/abs/1801.04381.
447
448

  Returns:
Fan Yang's avatar
Fan Yang committed
449
    A list of `BlockSpec` that defines structure of the base network.
450
451
452
453
454
455
  """

  spec_name = specs['spec_name']
  block_spec_schema = specs['block_spec_schema']
  block_specs = specs['block_specs']

456
  if not block_specs:
457
458
    raise ValueError(
        'The block spec cannot be empty for {} !'.format(spec_name))
459
460
461
462
463
464
465
466
467
468
469
470
471
472

  if len(block_specs[0]) != len(block_spec_schema):
    raise ValueError('The block spec values {} do not match with '
                     'the schema {}'.format(block_specs[0], block_spec_schema))

  decoded_specs = []

  for s in block_specs:
    kw_s = dict(zip(block_spec_schema, s))
    decoded_specs.append(BlockSpec(**kw_s))

  # This adjustment applies to V2 and V3
  if (spec_name != 'MobileNetV1'
      and finegrain_classification_mode
473
474
      and filter_size_scale < 1.0):
    decoded_specs[-1].filters /= filter_size_scale
475
476
477
478

  for ds in decoded_specs:
    if ds.filters:
      ds.filters = nn_layers.round_filters(filters=ds.filters,
479
                                           multiplier=filter_size_scale,
480
481
482
483
484
485
486
487
                                           divisor=divisible_by,
                                           min_depth=8)

  return decoded_specs


@tf.keras.utils.register_keras_serializable(package='Vision')
class MobileNet(tf.keras.Model):
Fan Yang's avatar
Fan Yang committed
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
  """Creates a MobileNet family model."""

  def __init__(
      self,
      model_id: str = 'MobileNetV2',
      filter_size_scale: float = 1.0,
      input_specs: layers.InputSpec = layers.InputSpec(
          shape=[None, None, None, 3]),
      # The followings are for hyper-parameter tuning
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      kernel_initializer: str = 'VarianceScaling',
      kernel_regularizer: Optional[regularizers.Regularizer] = None,
      bias_regularizer: Optional[regularizers.Regularizer] = None,
      # The followings should be kept the same most of the times
      output_stride: int = None,
      min_depth: int = 8,
      # divisible is not used in MobileNetV1
      divisible_by: int = 8,
      stochastic_depth_drop_rate: float = 0.0,
      regularize_depthwise: bool = False,
      use_sync_bn: bool = False,
      # finegrain is not used in MobileNetV1
      finegrain_classification_mode: bool = True,
      **kwargs):
    """Initializes a MobileNet model.
514
515

    Args:
Fan Yang's avatar
Fan Yang committed
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
      model_id: A `str` of MobileNet version. The supported values are
        `MobileNetV1`, `MobileNetV2`, `MobileNetV3Large`, `MobileNetV3Small`,
        and `MobileNetV3EdgeTPU`.
      filter_size_scale: A `float` of multiplier for the filters (number of
        channels) for all convolution ops. The value must be greater than zero.
        Typical usage will be to set this value in (0, 1) to reduce the number
        of parameters or computation cost of the model.
      input_specs: A `tf.keras.layers.InputSpec` of specs of the input tensor.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      kernel_initializer: A `str` for kernel initializer of convolutional
        layers.
      kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      bias_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D.
531
        Default to None.
Fan Yang's avatar
Fan Yang committed
532
533
534
535
536
537
538
539
540
541
      output_stride: An `int` that specifies the requested ratio of input to
        output spatial resolution. If not None, then we invoke atrous
        convolution if necessary to prevent the network from reducing the
        spatial resolution of activation maps. Allowed values are 8 (accurate
        fully convolutional mode), 16 (fast fully convolutional mode), 32
        (classification mode).
      min_depth: An `int` of minimum depth (number of channels) for all
        convolution ops. Enforced when filter_size_scale < 1, and not an active
        constraint when filter_size_scale >= 1.
      divisible_by: An `int` that ensures all inner dimensions are divisible by
542
        this number.
Fan Yang's avatar
Fan Yang committed
543
544
545
546
547
548
549
      stochastic_depth_drop_rate: A `float` of drop rate for drop connect layer.
      regularize_depthwise: If Ture, apply regularization on depthwise.
      use_sync_bn: If True, use synchronized batch normalization.
      finegrain_classification_mode: If True, the model will keep the last layer
        large even for small multipliers, following
        https://arxiv.org/abs/1801.04381.
      **kwargs: Additional keyword arguments to be passed.
550
551
552
553
554
    """
    if model_id not in SUPPORTED_SPECS_MAP:
      raise ValueError('The MobileNet version {} '
                       'is not supported'.format(model_id))

555
556
    if filter_size_scale <= 0:
      raise ValueError('filter_size_scale is not greater than zero.')
557
558
559
560
561
562
563
564
565
566
567

    if output_stride is not None:
      if model_id == 'MobileNetV1':
        if output_stride not in [8, 16, 32]:
          raise ValueError('Only allowed output_stride values are 8, 16, 32.')
      else:
        if output_stride == 0 or (output_stride > 1 and output_stride % 2):
          raise ValueError('Output stride must be None, 1 or a multiple of 2.')

    self._model_id = model_id
    self._input_specs = input_specs
568
    self._filter_size_scale = filter_size_scale
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
    self._min_depth = min_depth
    self._output_stride = output_stride
    self._divisible_by = divisible_by
    self._stochastic_depth_drop_rate = stochastic_depth_drop_rate
    self._regularize_depthwise = regularize_depthwise
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    self._use_sync_bn = use_sync_bn
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    self._finegrain_classification_mode = finegrain_classification_mode

    inputs = tf.keras.Input(shape=input_specs.shape[1:])

    block_specs = SUPPORTED_SPECS_MAP.get(model_id)
    self._decoded_specs = block_spec_decoder(
        specs=block_specs,
587
        filter_size_scale=self._filter_size_scale,
588
589
590
        divisible_by=self._get_divisible_by(),
        finegrain_classification_mode=self._finegrain_classification_mode)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
591
    x, endpoints, next_endpoint_level = self._mobilenet_base(inputs=inputs)
592

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
593
    endpoints[str(next_endpoint_level)] = x
594
595
596
597
598
599
600
601
602
603
604
605
606
    self._output_specs = {l: endpoints[l].get_shape() for l in endpoints}

    super(MobileNet, self).__init__(
        inputs=inputs, outputs=endpoints, **kwargs)

  def _get_divisible_by(self):
    if self._model_id == 'MobileNetV1':
      return 1
    else:
      return self._divisible_by

  def _mobilenet_base(self,
                      inputs: tf.Tensor
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
607
                      ) -> Tuple[tf.Tensor, Dict[str, tf.Tensor], int]:
Fan Yang's avatar
Fan Yang committed
608
    """Builds the base MobileNet architecture.
609
610

    Args:
Fan Yang's avatar
Fan Yang committed
611
      inputs: A `tf.Tensor` of shape `[batch_size, height, width, channels]`.
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632

    Returns:
      A tuple of output Tensor and dictionary that collects endpoints.
    """

    input_shape = inputs.get_shape().as_list()
    if len(input_shape) != 4:
      raise ValueError('Expected rank 4 input, was: %d' % len(input_shape))

    # The current_stride variable keeps track of the output stride of the
    # activations, i.e., the running product of convolution strides up to the
    # current network layer. This allows us to invoke atrous convolution
    # whenever applying the next convolution would result in the activations
    # having output stride larger than the target output_stride.
    current_stride = 1

    # The atrous convolution rate parameter.
    rate = 1

    net = inputs
    endpoints = {}
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
633
    endpoint_level = 2
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
    for i, block_def in enumerate(self._decoded_specs):
      block_name = 'block_group_{}_{}'.format(block_def.block_fn, i)
      # A small catch for gpooling block with None strides
      if not block_def.strides:
        block_def.strides = 1
      if self._output_stride is not None \
          and current_stride == self._output_stride:
        # If we have reached the target output_stride, then we need to employ
        # atrous convolution with stride=1 and multiply the atrous rate by the
        # current unit's stride for use in subsequent layers.
        layer_stride = 1
        layer_rate = rate
        rate *= block_def.strides
      else:
        layer_stride = block_def.strides
        layer_rate = 1
        current_stride *= block_def.strides

      if block_def.block_fn == 'convbn':

654
        net = Conv2DBNBlock(
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
            filters=block_def.filters,
            kernel_size=block_def.kernel_size,
            strides=block_def.strides,
            activation=block_def.activation,
            use_bias=block_def.use_bias,
            use_normalization=block_def.use_normalization,
            kernel_initializer=self._kernel_initializer,
            kernel_regularizer=self._kernel_regularizer,
            bias_regularizer=self._bias_regularizer,
            use_sync_bn=self._use_sync_bn,
            norm_momentum=self._norm_momentum,
            norm_epsilon=self._norm_epsilon
        )(net)

      elif block_def.block_fn == 'depsepconv':
        net = nn_blocks.DepthwiseSeparableConvBlock(
            filters=block_def.filters,
            kernel_size=block_def.kernel_size,
            strides=block_def.strides,
            activation=block_def.activation,
            dilation_rate=layer_rate,
            regularize_depthwise=self._regularize_depthwise,
            kernel_initializer=self._kernel_initializer,
            kernel_regularizer=self._kernel_regularizer,
            use_sync_bn=self._use_sync_bn,
            norm_momentum=self._norm_momentum,
            norm_epsilon=self._norm_epsilon,
        )(net)

684
      elif block_def.block_fn == 'invertedbottleneck':
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
        use_rate = rate
        if layer_rate > 1 and block_def.kernel_size != 1:
          # We will apply atrous rate in the following cases:
          # 1) When kernel_size is not in params, the operation then uses
          #   default kernel size 3x3.
          # 2) When kernel_size is in params, and if the kernel_size is not
          #   equal to (1, 1) (there is no need to apply atrous convolution to
          #   any 1x1 convolution).
          use_rate = layer_rate
        in_filters = net.shape.as_list()[-1]
        net = nn_blocks.InvertedBottleneckBlock(
            in_filters=in_filters,
            out_filters=block_def.filters,
            kernel_size=block_def.kernel_size,
            strides=layer_stride,
            expand_ratio=block_def.expand_ratio,
            se_ratio=block_def.se_ratio,
702
703
            expand_se_in_filters=True,
            se_gating_activation='hard_sigmoid',
704
705
706
707
708
709
710
711
712
713
714
715
            activation=block_def.activation,
            use_depthwise=block_def.use_depthwise,
            use_residual=block_def.use_residual,
            dilation_rate=use_rate,
            regularize_depthwise=self._regularize_depthwise,
            kernel_initializer=self._kernel_initializer,
            kernel_regularizer=self._kernel_regularizer,
            bias_regularizer=self._bias_regularizer,
            use_sync_bn=self._use_sync_bn,
            norm_momentum=self._norm_momentum,
            norm_epsilon=self._norm_epsilon,
            stochastic_depth_drop_rate=self._stochastic_depth_drop_rate,
716
            divisible_by=self._get_divisible_by()
717
718
719
        )(net)

      elif block_def.block_fn == 'gpooling':
720
721
        net = layers.GlobalAveragePooling2D()(net)
        net = layers.Reshape((1, 1, net.shape[1]))(net)
722
723
724
725
726
727

      else:
        raise ValueError('Unknown block type {} for layer {}'.format(
            block_def.block_fn, i))

      net = tf.identity(net, name=block_name)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
728
729
730
731
732
733

      if block_def.is_output:
        endpoints[str(endpoint_level)] = net
        endpoint_level += 1

    return net, endpoints, endpoint_level
734
735
736
737

  def get_config(self):
    config_dict = {
        'model_id': self._model_id,
738
        'filter_size_scale': self._filter_size_scale,
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
        'min_depth': self._min_depth,
        'output_stride': self._output_stride,
        'divisible_by': self._divisible_by,
        'stochastic_depth_drop_rate': self._stochastic_depth_drop_rate,
        'regularize_depthwise': self._regularize_depthwise,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
        'use_sync_bn': self._use_sync_bn,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon,
        'finegrain_classification_mode': self._finegrain_classification_mode,
    }
    return config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
  def output_specs(self):
    """A dict of {level: TensorShape} pairs for the model output."""
    return self._output_specs
Shixin Luo's avatar
Shixin Luo committed
762

763

Shixin Luo's avatar
Shixin Luo committed
764
765
766
767
768
@factory.register_backbone_builder('mobilenet')
def build_mobilenet(
    input_specs: tf.keras.layers.InputSpec,
    model_config,
    l2_regularizer: tf.keras.regularizers.Regularizer = None) -> tf.keras.Model:
Fan Yang's avatar
Fan Yang committed
769
  """Builds MobileNet backbone from a config."""
Shixin Luo's avatar
Shixin Luo committed
770
771
772
773
  backbone_type = model_config.backbone.type
  backbone_cfg = model_config.backbone.get()
  norm_activation_config = model_config.norm_activation
  assert backbone_type == 'mobilenet', (f'Inconsistent backbone type '
774
                                        f'{backbone_type}')
Shixin Luo's avatar
Shixin Luo committed
775
776
777

  return MobileNet(
      model_id=backbone_cfg.model_id,
778
      filter_size_scale=backbone_cfg.filter_size_scale,
Shixin Luo's avatar
Shixin Luo committed
779
780
781
782
783
784
      input_specs=input_specs,
      stochastic_depth_drop_rate=backbone_cfg.stochastic_depth_drop_rate,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer)