train_image_classifier.py 20.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Generic training script that trains a model using a given dataset."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
22
23
import tensorflow.compat.v1 as tf
import tf_slim as slim

24
from tensorflow.contrib import quantize as contrib_quantize
25

26
27
28
29
from datasets import dataset_factory
from deployment import model_deploy
from nets import nets_factory
from preprocessing import preprocessing_factory
30
31
32
33
34
35
36

tf.app.flags.DEFINE_string(
    'master', '', 'The address of the TensorFlow master to use.')

tf.app.flags.DEFINE_string(
    'train_dir', '/tmp/tfmodel/',
    'Directory where checkpoints and event logs are written to.')
37
38
39
40
tf.app.flags.DEFINE_float(
    'warmup_epochs', 0,
    'Linearly warmup learning rate from 0 to learning_rate over this '
    'many epochs.')
41
42

tf.app.flags.DEFINE_integer('num_clones', 1,
43
44
45
46
                            'Number of model clones to deploy. Note For '
                            'historical reasons loss from all clones averaged '
                            'out and learning rate decay happen per clone '
                            'epochs')
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

tf.app.flags.DEFINE_boolean('clone_on_cpu', False,
                            'Use CPUs to deploy clones.')

tf.app.flags.DEFINE_integer('worker_replicas', 1, 'Number of worker replicas.')

tf.app.flags.DEFINE_integer(
    'num_ps_tasks', 0,
    'The number of parameter servers. If the value is 0, then the parameters '
    'are handled locally by the worker.')

tf.app.flags.DEFINE_integer(
    'num_readers', 4,
    'The number of parallel readers that read data from the dataset.')

tf.app.flags.DEFINE_integer(
    'num_preprocessing_threads', 4,
    'The number of threads used to create the batches.')

tf.app.flags.DEFINE_integer(
67
    'log_every_n_steps', 10,
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    'The frequency with which logs are print.')

tf.app.flags.DEFINE_integer(
    'save_summaries_secs', 600,
    'The frequency with which summaries are saved, in seconds.')

tf.app.flags.DEFINE_integer(
    'save_interval_secs', 600,
    'The frequency with which the model is saved, in seconds.')

tf.app.flags.DEFINE_integer(
    'task', 0, 'Task id of the replica running the training.')

######################
# Optimization Flags #
######################

tf.app.flags.DEFINE_float(
    'weight_decay', 0.00004, 'The weight decay on the model weights.')

tf.app.flags.DEFINE_string(
    'optimizer', 'rmsprop',
    'The name of the optimizer, one of "adadelta", "adagrad", "adam",'
    '"ftrl", "momentum", "sgd" or "rmsprop".')

tf.app.flags.DEFINE_float(
    'adadelta_rho', 0.95,
    'The decay rate for adadelta.')

tf.app.flags.DEFINE_float(
    'adagrad_initial_accumulator_value', 0.1,
    'Starting value for the AdaGrad accumulators.')

tf.app.flags.DEFINE_float(
    'adam_beta1', 0.9,
    'The exponential decay rate for the 1st moment estimates.')

tf.app.flags.DEFINE_float(
    'adam_beta2', 0.999,
    'The exponential decay rate for the 2nd moment estimates.')

tf.app.flags.DEFINE_float('opt_epsilon', 1.0, 'Epsilon term for the optimizer.')

tf.app.flags.DEFINE_float('ftrl_learning_rate_power', -0.5,
                          'The learning rate power.')

tf.app.flags.DEFINE_float(
    'ftrl_initial_accumulator_value', 0.1,
    'Starting value for the FTRL accumulators.')

tf.app.flags.DEFINE_float(
    'ftrl_l1', 0.0, 'The FTRL l1 regularization strength.')

tf.app.flags.DEFINE_float(
    'ftrl_l2', 0.0, 'The FTRL l2 regularization strength.')

tf.app.flags.DEFINE_float(
    'momentum', 0.9,
    'The momentum for the MomentumOptimizer and RMSPropOptimizer.')

derekjchow's avatar
derekjchow committed
128
129
tf.app.flags.DEFINE_float('rmsprop_momentum', 0.9, 'Momentum.')

130
131
tf.app.flags.DEFINE_float('rmsprop_decay', 0.9, 'Decay term for RMSProp.')

132
133
134
135
136
tf.app.flags.DEFINE_integer(
    'quantize_delay', -1,
    'Number of steps to start quantized training. Set to -1 would disable '
    'quantized training.')

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#######################
# Learning Rate Flags #
#######################

tf.app.flags.DEFINE_string(
    'learning_rate_decay_type',
    'exponential',
    'Specifies how the learning rate is decayed. One of "fixed", "exponential",'
    ' or "polynomial"')

tf.app.flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.')

tf.app.flags.DEFINE_float(
    'end_learning_rate', 0.0001,
    'The minimal end learning rate used by a polynomial decay learning rate.')

tf.app.flags.DEFINE_float(
    'label_smoothing', 0.0, 'The amount of label smoothing.')

tf.app.flags.DEFINE_float(
    'learning_rate_decay_factor', 0.94, 'Learning rate decay factor.')

tf.app.flags.DEFINE_float(
    'num_epochs_per_decay', 2.0,
161
162
163
164
    'Number of epochs after which learning rate decays. Note: this flag counts '
    'epochs per clone but aggregates per sync replicas. So 1.0 means that '
    'each clone will go over full epoch individually, but replicas will go '
    'once across all replicas.')
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

tf.app.flags.DEFINE_bool(
    'sync_replicas', False,
    'Whether or not to synchronize the replicas during training.')

tf.app.flags.DEFINE_integer(
    'replicas_to_aggregate', 1,
    'The Number of gradients to collect before updating params.')

tf.app.flags.DEFINE_float(
    'moving_average_decay', None,
    'The decay to use for the moving average.'
    'If left as None, then moving averages are not used.')

#######################
# Dataset Flags #
#######################

tf.app.flags.DEFINE_string(
    'dataset_name', 'imagenet', 'The name of the dataset to load.')

tf.app.flags.DEFINE_string(
    'dataset_split_name', 'train', 'The name of the train/test split.')

tf.app.flags.DEFINE_string(
    'dataset_dir', None, 'The directory where the dataset files are stored.')

tf.app.flags.DEFINE_integer(
    'labels_offset', 0,
    'An offset for the labels in the dataset. This flag is primarily used to '
    'evaluate the VGG and ResNet architectures which do not use a background '
    'class for the ImageNet dataset.')

tf.app.flags.DEFINE_string(
    'model_name', 'inception_v3', 'The name of the architecture to train.')

tf.app.flags.DEFINE_string(
    'preprocessing_name', None, 'The name of the preprocessing to use. If left '
    'as `None`, then the model_name flag is used.')

tf.app.flags.DEFINE_integer(
    'batch_size', 32, 'The number of samples in each batch.')

tf.app.flags.DEFINE_integer(
    'train_image_size', None, 'Train image size')

tf.app.flags.DEFINE_integer('max_number_of_steps', None,
                            'The maximum number of training steps.')

214
215
216
tf.app.flags.DEFINE_bool('use_grayscale', False,
                         'Whether to convert input images to grayscale.')

217
218
219
220
221
222
223
224
225
226
#####################
# Fine-Tuning Flags #
#####################

tf.app.flags.DEFINE_string(
    'checkpoint_path', None,
    'The path to a checkpoint from which to fine-tune.')

tf.app.flags.DEFINE_string(
    'checkpoint_exclude_scopes', None,
227
    'Comma-separated list of scopes of variables to exclude when restoring '
228
229
    'from a checkpoint.')

230
231
232
233
234
235
236
237
238
tf.app.flags.DEFINE_string(
    'trainable_scopes', None,
    'Comma-separated list of scopes to filter the set of variables to train.'
    'By default, None would train all the variables.')

tf.app.flags.DEFINE_boolean(
    'ignore_missing_vars', False,
    'When restoring a checkpoint would ignore missing variables.')

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
FLAGS = tf.app.flags.FLAGS


def _configure_learning_rate(num_samples_per_epoch, global_step):
  """Configures the learning rate.

  Args:
    num_samples_per_epoch: The number of samples in each epoch of training.
    global_step: The global_step tensor.

  Returns:
    A `Tensor` representing the learning rate.

  Raises:
    ValueError: if
  """
255
256
257
  # Note: when num_clones is > 1, this will actually have each clone to go
  # over each epoch FLAGS.num_epochs_per_decay times. This is different
  # behavior from sync replicas and is expected to produce different results.
258
  steps_per_epoch = num_samples_per_epoch / FLAGS.batch_size
259
  if FLAGS.sync_replicas:
260
261
262
    steps_per_epoch /= FLAGS.replicas_to_aggregate

  decay_steps = int(steps_per_epoch * FLAGS.num_epochs_per_decay)
263
264

  if FLAGS.learning_rate_decay_type == 'exponential':
265
266
267
268
269
270
271
    learning_rate = tf.train.exponential_decay(
        FLAGS.learning_rate,
        global_step,
        decay_steps,
        FLAGS.learning_rate_decay_factor,
        staircase=True,
        name='exponential_decay_learning_rate')
272
  elif FLAGS.learning_rate_decay_type == 'fixed':
273
    learning_rate = tf.constant(FLAGS.learning_rate, name='fixed_learning_rate')
274
  elif FLAGS.learning_rate_decay_type == 'polynomial':
275
276
277
278
279
280
281
282
    learning_rate = tf.train.polynomial_decay(
        FLAGS.learning_rate,
        global_step,
        decay_steps,
        FLAGS.end_learning_rate,
        power=1.0,
        cycle=False,
        name='polynomial_decay_learning_rate')
283
  else:
284
    raise ValueError('learning_rate_decay_type [%s] was not recognized' %
285
286
                     FLAGS.learning_rate_decay_type)

287
288
289
290
291
292
293
  if FLAGS.warmup_epochs:
    warmup_lr = (
        FLAGS.learning_rate * tf.cast(global_step, tf.float32) /
        (steps_per_epoch * FLAGS.warmup_epochs))
    learning_rate = tf.minimum(warmup_lr, learning_rate)
  return learning_rate

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

def _configure_optimizer(learning_rate):
  """Configures the optimizer used for training.

  Args:
    learning_rate: A scalar or `Tensor` learning rate.

  Returns:
    An instance of an optimizer.

  Raises:
    ValueError: if FLAGS.optimizer is not recognized.
  """
  if FLAGS.optimizer == 'adadelta':
    optimizer = tf.train.AdadeltaOptimizer(
        learning_rate,
        rho=FLAGS.adadelta_rho,
        epsilon=FLAGS.opt_epsilon)
  elif FLAGS.optimizer == 'adagrad':
    optimizer = tf.train.AdagradOptimizer(
        learning_rate,
        initial_accumulator_value=FLAGS.adagrad_initial_accumulator_value)
  elif FLAGS.optimizer == 'adam':
    optimizer = tf.train.AdamOptimizer(
        learning_rate,
        beta1=FLAGS.adam_beta1,
        beta2=FLAGS.adam_beta2,
        epsilon=FLAGS.opt_epsilon)
  elif FLAGS.optimizer == 'ftrl':
    optimizer = tf.train.FtrlOptimizer(
        learning_rate,
        learning_rate_power=FLAGS.ftrl_learning_rate_power,
        initial_accumulator_value=FLAGS.ftrl_initial_accumulator_value,
        l1_regularization_strength=FLAGS.ftrl_l1,
        l2_regularization_strength=FLAGS.ftrl_l2)
  elif FLAGS.optimizer == 'momentum':
    optimizer = tf.train.MomentumOptimizer(
        learning_rate,
        momentum=FLAGS.momentum,
        name='Momentum')
  elif FLAGS.optimizer == 'rmsprop':
    optimizer = tf.train.RMSPropOptimizer(
        learning_rate,
        decay=FLAGS.rmsprop_decay,
derekjchow's avatar
derekjchow committed
338
        momentum=FLAGS.rmsprop_momentum,
339
340
341
342
        epsilon=FLAGS.opt_epsilon)
  elif FLAGS.optimizer == 'sgd':
    optimizer = tf.train.GradientDescentOptimizer(learning_rate)
  else:
343
    raise ValueError('Optimizer [%s] was not recognized' % FLAGS.optimizer)
344
345
  return optimizer

derekjchow's avatar
derekjchow committed
346

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
def _get_init_fn():
  """Returns a function run by the chief worker to warm-start the training.

  Note that the init_fn is only run when initializing the model during the very
  first global step.

  Returns:
    An init function run by the supervisor.
  """
  if FLAGS.checkpoint_path is None:
    return None

  # Warn the user if a checkpoint exists in the train_dir. Then we'll be
  # ignoring the checkpoint anyway.
  if tf.train.latest_checkpoint(FLAGS.train_dir):
    tf.logging.info(
        'Ignoring --checkpoint_path because a checkpoint already exists in %s'
        % FLAGS.train_dir)
    return None

  exclusions = []
  if FLAGS.checkpoint_exclude_scopes:
    exclusions = [scope.strip()
                  for scope in FLAGS.checkpoint_exclude_scopes.split(',')]

  # TODO(sguada) variables.filter_variables()
  variables_to_restore = []
  for var in slim.get_model_variables():
    for exclusion in exclusions:
      if var.op.name.startswith(exclusion):
        break
378
    else:
379
380
      variables_to_restore.append(var)

381
382
383
384
385
386
387
  if tf.gfile.IsDirectory(FLAGS.checkpoint_path):
    checkpoint_path = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
  else:
    checkpoint_path = FLAGS.checkpoint_path

  tf.logging.info('Fine-tuning from %s' % checkpoint_path)

388
  return slim.assign_from_checkpoint_fn(
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
      checkpoint_path,
      variables_to_restore,
      ignore_missing_vars=FLAGS.ignore_missing_vars)


def _get_variables_to_train():
  """Returns a list of variables to train.

  Returns:
    A list of variables to train by the optimizer.
  """
  if FLAGS.trainable_scopes is None:
    return tf.trainable_variables()
  else:
    scopes = [scope.strip() for scope in FLAGS.trainable_scopes.split(',')]

  variables_to_train = []
  for scope in scopes:
    variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
    variables_to_train.extend(variables)
  return variables_to_train
410
411
412
413
414
415


def main(_):
  if not FLAGS.dataset_dir:
    raise ValueError('You must supply the dataset directory with --dataset_dir')

416
  tf.logging.set_verbosity(tf.logging.INFO)
417
  with tf.Graph().as_default():
418
419
420
    #######################
    # Config model_deploy #
    #######################
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
    deploy_config = model_deploy.DeploymentConfig(
        num_clones=FLAGS.num_clones,
        clone_on_cpu=FLAGS.clone_on_cpu,
        replica_id=FLAGS.task,
        num_replicas=FLAGS.worker_replicas,
        num_ps_tasks=FLAGS.num_ps_tasks)

    # Create global_step
    with tf.device(deploy_config.variables_device()):
      global_step = slim.create_global_step()

    ######################
    # Select the dataset #
    ######################
    dataset = dataset_factory.get_dataset(
        FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir)

438
    ######################
439
    # Select the network #
440
    ######################
441
    network_fn = nets_factory.get_network_fn(
442
443
444
445
446
447
448
449
450
451
452
        FLAGS.model_name,
        num_classes=(dataset.num_classes - FLAGS.labels_offset),
        weight_decay=FLAGS.weight_decay,
        is_training=True)

    #####################################
    # Select the preprocessing function #
    #####################################
    preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
    image_preprocessing_fn = preprocessing_factory.get_preprocessing(
        preprocessing_name,
453
454
        is_training=True,
        use_grayscale=FLAGS.use_grayscale)
455
456
457
458
459
460
461
462
463
464
465
466
467

    ##############################################################
    # Create a dataset provider that loads data from the dataset #
    ##############################################################
    with tf.device(deploy_config.inputs_device()):
      provider = slim.dataset_data_provider.DatasetDataProvider(
          dataset,
          num_readers=FLAGS.num_readers,
          common_queue_capacity=20 * FLAGS.batch_size,
          common_queue_min=10 * FLAGS.batch_size)
      [image, label] = provider.get(['image', 'label'])
      label -= FLAGS.labels_offset

468
      train_image_size = FLAGS.train_image_size or network_fn.default_image_size
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

      image = image_preprocessing_fn(image, train_image_size, train_image_size)

      images, labels = tf.train.batch(
          [image, label],
          batch_size=FLAGS.batch_size,
          num_threads=FLAGS.num_preprocessing_threads,
          capacity=5 * FLAGS.batch_size)
      labels = slim.one_hot_encoding(
          labels, dataset.num_classes - FLAGS.labels_offset)
      batch_queue = slim.prefetch_queue.prefetch_queue(
          [images, labels], capacity=2 * deploy_config.num_clones)

    ####################
    # Define the model #
    ####################
    def clone_fn(batch_queue):
486
      """Allows data parallelism by creating multiple clones of network_fn."""
derekjchow's avatar
derekjchow committed
487
      images, labels = batch_queue.dequeue()
488
      logits, end_points = network_fn(images)
489
490
491
492
493

      #############################
      # Specify the loss function #
      #############################
      if 'AuxLogits' in end_points:
derekjchow's avatar
derekjchow committed
494
495
496
497
498
499
        slim.losses.softmax_cross_entropy(
            end_points['AuxLogits'], labels,
            label_smoothing=FLAGS.label_smoothing, weights=0.4,
            scope='aux_loss')
      slim.losses.softmax_cross_entropy(
          logits, labels, label_smoothing=FLAGS.label_smoothing, weights=1.0)
500
      return end_points
501
502
503
504
505
506
507

    # Gather initial summaries.
    summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))

    clones = model_deploy.create_clones(deploy_config, clone_fn, [batch_queue])
    first_clone_scope = deploy_config.clone_scope(0)
    # Gather update_ops from the first clone. These contain, for example,
508
    # the updates for the batch_norm variables created by network_fn.
509
510
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)

511
512
513
514
    # Add summaries for end_points.
    end_points = clones[0].outputs
    for end_point in end_points:
      x = end_points[end_point]
515
516
      summaries.add(tf.summary.histogram('activations/' + end_point, x))
      summaries.add(tf.summary.scalar('sparsity/' + end_point,
517
518
                                      tf.nn.zero_fraction(x)))

519
520
    # Add summaries for losses.
    for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope):
521
      summaries.add(tf.summary.scalar('losses/%s' % loss.op.name, loss))
522
523
524

    # Add summaries for variables.
    for variable in slim.get_model_variables():
525
      summaries.add(tf.summary.histogram(variable.op.name, variable))
526
527
528
529
530
531
532
533
534
535
536

    #################################
    # Configure the moving averages #
    #################################
    if FLAGS.moving_average_decay:
      moving_average_variables = slim.get_model_variables()
      variable_averages = tf.train.ExponentialMovingAverage(
          FLAGS.moving_average_decay, global_step)
    else:
      moving_average_variables, variable_averages = None, None

537
    if FLAGS.quantize_delay >= 0:
538
      contrib_quantize.create_training_graph(quant_delay=FLAGS.quantize_delay)
539

540
541
542
543
544
545
    #########################################
    # Configure the optimization procedure. #
    #########################################
    with tf.device(deploy_config.optimizer_device()):
      learning_rate = _configure_learning_rate(dataset.num_samples, global_step)
      optimizer = _configure_optimizer(learning_rate)
546
      summaries.add(tf.summary.scalar('learning_rate', learning_rate))
547
548
549
550
551
552
553

    if FLAGS.sync_replicas:
      # If sync_replicas is enabled, the averaging will be done in the chief
      # queue runner.
      optimizer = tf.train.SyncReplicasOptimizer(
          opt=optimizer,
          replicas_to_aggregate=FLAGS.replicas_to_aggregate,
derekjchow's avatar
derekjchow committed
554
          total_num_replicas=FLAGS.worker_replicas,
555
          variable_averages=variable_averages,
derekjchow's avatar
derekjchow committed
556
          variables_to_average=moving_average_variables)
557
558
559
560
    elif FLAGS.moving_average_decay:
      # Update ops executed locally by trainer.
      update_ops.append(variable_averages.apply(moving_average_variables))

561
562
563
    # Variables to train.
    variables_to_train = _get_variables_to_train()

564
    #  and returns a train_tensor and summary_op
565
566
567
568
    total_loss, clones_gradients = model_deploy.optimize_clones(
        clones,
        optimizer,
        var_list=variables_to_train)
569
    # Add total_loss to summary.
570
    summaries.add(tf.summary.scalar('total_loss', total_loss))
571
572
573
574
575
576
577

    # Create gradient updates.
    grad_updates = optimizer.apply_gradients(clones_gradients,
                                             global_step=global_step)
    update_ops.append(grad_updates)

    update_op = tf.group(*update_ops)
578
    with tf.control_dependencies([update_op]):
579
      train_tensor = tf.identity(total_loss, name='train_op')
580
581
582
583
584
585
586

    # Add the summaries from the first clone. These contain the summaries
    # created by model_fn and either optimize_clones() or _gather_clone_loss().
    summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES,
                                       first_clone_scope))

    # Merge all summaries together.
587
    summary_op = tf.summary.merge(list(summaries), name='summary_op')
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602

    ###########################
    # Kicks off the training. #
    ###########################
    slim.learning.train(
        train_tensor,
        logdir=FLAGS.train_dir,
        master=FLAGS.master,
        is_chief=(FLAGS.task == 0),
        init_fn=_get_init_fn(),
        summary_op=summary_op,
        number_of_steps=FLAGS.max_number_of_steps,
        log_every_n_steps=FLAGS.log_every_n_steps,
        save_summaries_secs=FLAGS.save_summaries_secs,
        save_interval_secs=FLAGS.save_interval_secs,
603
        sync_optimizer=optimizer if FLAGS.sync_replicas else None)
604
605
606
607


if __name__ == '__main__':
  tf.app.run()