pnasnet.py 10.3 KB
Newer Older
maximneumann's avatar
maximneumann committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains the definition for the PNASNet classification networks.

Paper: https://arxiv.org/abs/1712.00559
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
25
26
import tensorflow.compat.v1 as tf
import tf_slim as slim
27
from tensorflow.contrib import training as contrib_training
maximneumann's avatar
maximneumann committed
28
29
30
31

from nets.nasnet import nasnet
from nets.nasnet import nasnet_utils

32
arg_scope = slim.arg_scope
maximneumann's avatar
maximneumann committed
33
34
35
36


def large_imagenet_config():
  """Large ImageNet configuration based on PNASNet-5."""
37
  return contrib_training.HParams(
maximneumann's avatar
maximneumann committed
38
39
40
41
42
43
44
45
46
      stem_multiplier=3.0,
      dense_dropout_keep_prob=0.5,
      num_cells=12,
      filter_scaling_rate=2.0,
      num_conv_filters=216,
      drop_path_keep_prob=0.6,
      use_aux_head=1,
      num_reduction_layers=2,
      data_format='NHWC',
47
48
      skip_reduction_layer_input=1,
      total_training_steps=250000,
49
      use_bounded_activation=False,
50
51
52
53
54
  )


def mobile_imagenet_config():
  """Mobile ImageNet configuration based on PNASNet-5."""
55
  return contrib_training.HParams(
56
57
58
59
60
61
62
63
64
65
      stem_multiplier=1.0,
      dense_dropout_keep_prob=0.5,
      num_cells=9,
      filter_scaling_rate=2.0,
      num_conv_filters=54,
      drop_path_keep_prob=1.0,
      use_aux_head=1,
      num_reduction_layers=2,
      data_format='NHWC',
      skip_reduction_layer_input=1,
maximneumann's avatar
maximneumann committed
66
      total_training_steps=250000,
67
      use_bounded_activation=False,
maximneumann's avatar
maximneumann committed
68
69
70
71
72
73
74
75
76
77
  )


def pnasnet_large_arg_scope(weight_decay=4e-5, batch_norm_decay=0.9997,
                            batch_norm_epsilon=0.001):
  """Default arg scope for the PNASNet Large ImageNet model."""
  return nasnet.nasnet_large_arg_scope(
      weight_decay, batch_norm_decay, batch_norm_epsilon)


78
79
80
81
82
83
84
85
def pnasnet_mobile_arg_scope(weight_decay=4e-5,
                             batch_norm_decay=0.9997,
                             batch_norm_epsilon=0.001):
  """Default arg scope for the PNASNet Mobile ImageNet model."""
  return nasnet.nasnet_mobile_arg_scope(weight_decay, batch_norm_decay,
                                        batch_norm_epsilon)


maximneumann's avatar
maximneumann committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
def _build_pnasnet_base(images,
                        normal_cell,
                        num_classes,
                        hparams,
                        is_training,
                        final_endpoint=None):
  """Constructs a PNASNet image model."""

  end_points = {}

  def add_and_check_endpoint(endpoint_name, net):
    end_points[endpoint_name] = net
    return final_endpoint and (endpoint_name == final_endpoint)

  # Find where to place the reduction cells or stride normal cells
  reduction_indices = nasnet_utils.calc_reduction_layers(
      hparams.num_cells, hparams.num_reduction_layers)

  # pylint: disable=protected-access
  stem = lambda: nasnet._imagenet_stem(images, hparams, normal_cell)
  # pylint: enable=protected-access
  net, cell_outputs = stem()
  if add_and_check_endpoint('Stem', net):
    return net, end_points

  # Setup for building in the auxiliary head.
  aux_head_cell_idxes = []
  if len(reduction_indices) >= 2:
    aux_head_cell_idxes.append(reduction_indices[1] - 1)

  # Run the cells
  filter_scaling = 1.0
  # true_cell_num accounts for the stem cells
  true_cell_num = 2
120
  activation_fn = tf.nn.relu6 if hparams.use_bounded_activation else tf.nn.relu
maximneumann's avatar
maximneumann committed
121
122
123
124
  for cell_num in range(hparams.num_cells):
    is_reduction = cell_num in reduction_indices
    stride = 2 if is_reduction else 1
    if is_reduction: filter_scaling *= hparams.filter_scaling_rate
125
126
    if hparams.skip_reduction_layer_input or not is_reduction:
      prev_layer = cell_outputs[-2]
maximneumann's avatar
maximneumann committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    net = normal_cell(
        net,
        scope='cell_{}'.format(cell_num),
        filter_scaling=filter_scaling,
        stride=stride,
        prev_layer=prev_layer,
        cell_num=true_cell_num)
    if add_and_check_endpoint('Cell_{}'.format(cell_num), net):
      return net, end_points
    true_cell_num += 1
    cell_outputs.append(net)

    if (hparams.use_aux_head and cell_num in aux_head_cell_idxes and
        num_classes and is_training):
141
      aux_net = activation_fn(net)
maximneumann's avatar
maximneumann committed
142
143
144
145
146
147
      # pylint: disable=protected-access
      nasnet._build_aux_head(aux_net, end_points, num_classes, hparams,
                             scope='aux_{}'.format(cell_num))
      # pylint: enable=protected-access

  # Final softmax layer
148
  with tf.variable_scope('final_layer'):
149
    net = activation_fn(net)
maximneumann's avatar
maximneumann committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    net = nasnet_utils.global_avg_pool(net)
    if add_and_check_endpoint('global_pool', net) or not num_classes:
      return net, end_points
    net = slim.dropout(net, hparams.dense_dropout_keep_prob, scope='dropout')
    logits = slim.fully_connected(net, num_classes)

    if add_and_check_endpoint('Logits', logits):
      return net, end_points

    predictions = tf.nn.softmax(logits, name='predictions')
    if add_and_check_endpoint('Predictions', predictions):
      return net, end_points
  return logits, end_points


def build_pnasnet_large(images,
                        num_classes,
                        is_training=True,
                        final_endpoint=None,
                        config=None):
  """Build PNASNet Large model for the ImageNet Dataset."""
  hparams = copy.deepcopy(config) if config else large_imagenet_config()
  # pylint: disable=protected-access
  nasnet._update_hparams(hparams, is_training)
  # pylint: enable=protected-access

  if tf.test.is_gpu_available() and hparams.data_format == 'NHWC':
177
    tf.logging.info(
178
179
        'A GPU is available on the machine, consider using NCHW '
        'data format for increased speed on GPU.')
maximneumann's avatar
maximneumann committed
180
181

  if hparams.data_format == 'NCHW':
182
    images = tf.transpose(a=images, perm=[0, 3, 1, 2])
maximneumann's avatar
maximneumann committed
183
184
185
186
187
188
189
190
191

  # Calculate the total number of cells in the network.
  # There is no distinction between reduction and normal cells in PNAS so the
  # total number of cells is equal to the number normal cells plus the number
  # of stem cells (two by default).
  total_num_cells = hparams.num_cells + 2

  normal_cell = PNasNetNormalCell(hparams.num_conv_filters,
                                  hparams.drop_path_keep_prob, total_num_cells,
192
193
                                  hparams.total_training_steps,
                                  hparams.use_bounded_activation)
maximneumann's avatar
maximneumann committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
  with arg_scope(
      [slim.dropout, nasnet_utils.drop_path, slim.batch_norm],
      is_training=is_training):
    with arg_scope([slim.avg_pool2d, slim.max_pool2d, slim.conv2d,
                    slim.batch_norm, slim.separable_conv2d,
                    nasnet_utils.factorized_reduction,
                    nasnet_utils.global_avg_pool,
                    nasnet_utils.get_channel_index,
                    nasnet_utils.get_channel_dim],
                   data_format=hparams.data_format):
      return _build_pnasnet_base(
          images,
          normal_cell=normal_cell,
          num_classes=num_classes,
          hparams=hparams,
          is_training=is_training,
          final_endpoint=final_endpoint)
build_pnasnet_large.default_image_size = 331


214
215
216
217
218
219
220
221
222
223
224
225
def build_pnasnet_mobile(images,
                         num_classes,
                         is_training=True,
                         final_endpoint=None,
                         config=None):
  """Build PNASNet Mobile model for the ImageNet Dataset."""
  hparams = copy.deepcopy(config) if config else mobile_imagenet_config()
  # pylint: disable=protected-access
  nasnet._update_hparams(hparams, is_training)
  # pylint: enable=protected-access

  if tf.test.is_gpu_available() and hparams.data_format == 'NHWC':
226
    tf.logging.info(
227
228
        'A GPU is available on the machine, consider using NCHW '
        'data format for increased speed on GPU.')
229
230

  if hparams.data_format == 'NCHW':
231
    images = tf.transpose(a=images, perm=[0, 3, 1, 2])
232
233
234
235
236
237
238
239
240

  # Calculate the total number of cells in the network.
  # There is no distinction between reduction and normal cells in PNAS so the
  # total number of cells is equal to the number normal cells plus the number
  # of stem cells (two by default).
  total_num_cells = hparams.num_cells + 2

  normal_cell = PNasNetNormalCell(hparams.num_conv_filters,
                                  hparams.drop_path_keep_prob, total_num_cells,
241
242
                                  hparams.total_training_steps,
                                  hparams.use_bounded_activation)
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
  with arg_scope(
      [slim.dropout, nasnet_utils.drop_path, slim.batch_norm],
      is_training=is_training):
    with arg_scope(
        [
            slim.avg_pool2d, slim.max_pool2d, slim.conv2d, slim.batch_norm,
            slim.separable_conv2d, nasnet_utils.factorized_reduction,
            nasnet_utils.global_avg_pool, nasnet_utils.get_channel_index,
            nasnet_utils.get_channel_dim
        ],
        data_format=hparams.data_format):
      return _build_pnasnet_base(
          images,
          normal_cell=normal_cell,
          num_classes=num_classes,
          hparams=hparams,
          is_training=is_training,
          final_endpoint=final_endpoint)


build_pnasnet_mobile.default_image_size = 224


maximneumann's avatar
maximneumann committed
266
267
268
269
class PNasNetNormalCell(nasnet_utils.NasNetABaseCell):
  """PNASNet Normal Cell."""

  def __init__(self, num_conv_filters, drop_path_keep_prob, total_num_cells,
270
               total_training_steps, use_bounded_activation=False):
maximneumann's avatar
maximneumann committed
271
272
273
274
275
276
277
278
279
280
281
    # Configuration for the PNASNet-5 model.
    operations = [
        'separable_5x5_2', 'max_pool_3x3', 'separable_7x7_2', 'max_pool_3x3',
        'separable_5x5_2', 'separable_3x3_2', 'separable_3x3_2', 'max_pool_3x3',
        'separable_3x3_2', 'none'
    ]
    used_hiddenstates = [1, 1, 0, 0, 0, 0, 0]
    hiddenstate_indices = [1, 1, 0, 0, 0, 0, 4, 0, 1, 0]

    super(PNasNetNormalCell, self).__init__(
        num_conv_filters, operations, used_hiddenstates, hiddenstate_indices,
282
283
        drop_path_keep_prob, total_num_cells, total_training_steps,
        use_bounded_activation)