pnasnet.py 10.2 KB
Newer Older
maximneumann's avatar
maximneumann committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains the definition for the PNASNet classification networks.

Paper: https://arxiv.org/abs/1712.00559
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
import tensorflow as tf

from nets.nasnet import nasnet
from nets.nasnet import nasnet_utils

arg_scope = tf.contrib.framework.arg_scope
slim = tf.contrib.slim


def large_imagenet_config():
  """Large ImageNet configuration based on PNASNet-5."""
  return tf.contrib.training.HParams(
      stem_multiplier=3.0,
      dense_dropout_keep_prob=0.5,
      num_cells=12,
      filter_scaling_rate=2.0,
      num_conv_filters=216,
      drop_path_keep_prob=0.6,
      use_aux_head=1,
      num_reduction_layers=2,
      data_format='NHWC',
46
47
      skip_reduction_layer_input=1,
      total_training_steps=250000,
48
      use_bounded_activation=False,
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
  )


def mobile_imagenet_config():
  """Mobile ImageNet configuration based on PNASNet-5."""
  return tf.contrib.training.HParams(
      stem_multiplier=1.0,
      dense_dropout_keep_prob=0.5,
      num_cells=9,
      filter_scaling_rate=2.0,
      num_conv_filters=54,
      drop_path_keep_prob=1.0,
      use_aux_head=1,
      num_reduction_layers=2,
      data_format='NHWC',
      skip_reduction_layer_input=1,
maximneumann's avatar
maximneumann committed
65
      total_training_steps=250000,
66
      use_bounded_activation=False,
maximneumann's avatar
maximneumann committed
67
68
69
70
71
72
73
74
75
76
  )


def pnasnet_large_arg_scope(weight_decay=4e-5, batch_norm_decay=0.9997,
                            batch_norm_epsilon=0.001):
  """Default arg scope for the PNASNet Large ImageNet model."""
  return nasnet.nasnet_large_arg_scope(
      weight_decay, batch_norm_decay, batch_norm_epsilon)


77
78
79
80
81
82
83
84
def pnasnet_mobile_arg_scope(weight_decay=4e-5,
                             batch_norm_decay=0.9997,
                             batch_norm_epsilon=0.001):
  """Default arg scope for the PNASNet Mobile ImageNet model."""
  return nasnet.nasnet_mobile_arg_scope(weight_decay, batch_norm_decay,
                                        batch_norm_epsilon)


maximneumann's avatar
maximneumann committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
def _build_pnasnet_base(images,
                        normal_cell,
                        num_classes,
                        hparams,
                        is_training,
                        final_endpoint=None):
  """Constructs a PNASNet image model."""

  end_points = {}

  def add_and_check_endpoint(endpoint_name, net):
    end_points[endpoint_name] = net
    return final_endpoint and (endpoint_name == final_endpoint)

  # Find where to place the reduction cells or stride normal cells
  reduction_indices = nasnet_utils.calc_reduction_layers(
      hparams.num_cells, hparams.num_reduction_layers)

  # pylint: disable=protected-access
  stem = lambda: nasnet._imagenet_stem(images, hparams, normal_cell)
  # pylint: enable=protected-access
  net, cell_outputs = stem()
  if add_and_check_endpoint('Stem', net):
    return net, end_points

  # Setup for building in the auxiliary head.
  aux_head_cell_idxes = []
  if len(reduction_indices) >= 2:
    aux_head_cell_idxes.append(reduction_indices[1] - 1)

  # Run the cells
  filter_scaling = 1.0
  # true_cell_num accounts for the stem cells
  true_cell_num = 2
119
  activation_fn = tf.nn.relu6 if hparams.use_bounded_activation else tf.nn.relu
maximneumann's avatar
maximneumann committed
120
121
122
123
  for cell_num in range(hparams.num_cells):
    is_reduction = cell_num in reduction_indices
    stride = 2 if is_reduction else 1
    if is_reduction: filter_scaling *= hparams.filter_scaling_rate
124
125
    if hparams.skip_reduction_layer_input or not is_reduction:
      prev_layer = cell_outputs[-2]
maximneumann's avatar
maximneumann committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    net = normal_cell(
        net,
        scope='cell_{}'.format(cell_num),
        filter_scaling=filter_scaling,
        stride=stride,
        prev_layer=prev_layer,
        cell_num=true_cell_num)
    if add_and_check_endpoint('Cell_{}'.format(cell_num), net):
      return net, end_points
    true_cell_num += 1
    cell_outputs.append(net)

    if (hparams.use_aux_head and cell_num in aux_head_cell_idxes and
        num_classes and is_training):
140
      aux_net = activation_fn(net)
maximneumann's avatar
maximneumann committed
141
142
143
144
145
146
147
      # pylint: disable=protected-access
      nasnet._build_aux_head(aux_net, end_points, num_classes, hparams,
                             scope='aux_{}'.format(cell_num))
      # pylint: enable=protected-access

  # Final softmax layer
  with tf.variable_scope('final_layer'):
148
    net = activation_fn(net)
maximneumann's avatar
maximneumann committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    net = nasnet_utils.global_avg_pool(net)
    if add_and_check_endpoint('global_pool', net) or not num_classes:
      return net, end_points
    net = slim.dropout(net, hparams.dense_dropout_keep_prob, scope='dropout')
    logits = slim.fully_connected(net, num_classes)

    if add_and_check_endpoint('Logits', logits):
      return net, end_points

    predictions = tf.nn.softmax(logits, name='predictions')
    if add_and_check_endpoint('Predictions', predictions):
      return net, end_points
  return logits, end_points


def build_pnasnet_large(images,
                        num_classes,
                        is_training=True,
                        final_endpoint=None,
                        config=None):
  """Build PNASNet Large model for the ImageNet Dataset."""
  hparams = copy.deepcopy(config) if config else large_imagenet_config()
  # pylint: disable=protected-access
  nasnet._update_hparams(hparams, is_training)
  # pylint: enable=protected-access

  if tf.test.is_gpu_available() and hparams.data_format == 'NHWC':
    tf.logging.info('A GPU is available on the machine, consider using NCHW '
                    'data format for increased speed on GPU.')

  if hparams.data_format == 'NCHW':
    images = tf.transpose(images, [0, 3, 1, 2])

  # Calculate the total number of cells in the network.
  # There is no distinction between reduction and normal cells in PNAS so the
  # total number of cells is equal to the number normal cells plus the number
  # of stem cells (two by default).
  total_num_cells = hparams.num_cells + 2

  normal_cell = PNasNetNormalCell(hparams.num_conv_filters,
                                  hparams.drop_path_keep_prob, total_num_cells,
190
191
                                  hparams.total_training_steps,
                                  hparams.use_bounded_activation)
maximneumann's avatar
maximneumann committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
  with arg_scope(
      [slim.dropout, nasnet_utils.drop_path, slim.batch_norm],
      is_training=is_training):
    with arg_scope([slim.avg_pool2d, slim.max_pool2d, slim.conv2d,
                    slim.batch_norm, slim.separable_conv2d,
                    nasnet_utils.factorized_reduction,
                    nasnet_utils.global_avg_pool,
                    nasnet_utils.get_channel_index,
                    nasnet_utils.get_channel_dim],
                   data_format=hparams.data_format):
      return _build_pnasnet_base(
          images,
          normal_cell=normal_cell,
          num_classes=num_classes,
          hparams=hparams,
          is_training=is_training,
          final_endpoint=final_endpoint)
build_pnasnet_large.default_image_size = 331


212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
def build_pnasnet_mobile(images,
                         num_classes,
                         is_training=True,
                         final_endpoint=None,
                         config=None):
  """Build PNASNet Mobile model for the ImageNet Dataset."""
  hparams = copy.deepcopy(config) if config else mobile_imagenet_config()
  # pylint: disable=protected-access
  nasnet._update_hparams(hparams, is_training)
  # pylint: enable=protected-access

  if tf.test.is_gpu_available() and hparams.data_format == 'NHWC':
    tf.logging.info('A GPU is available on the machine, consider using NCHW '
                    'data format for increased speed on GPU.')

  if hparams.data_format == 'NCHW':
    images = tf.transpose(images, [0, 3, 1, 2])

  # Calculate the total number of cells in the network.
  # There is no distinction between reduction and normal cells in PNAS so the
  # total number of cells is equal to the number normal cells plus the number
  # of stem cells (two by default).
  total_num_cells = hparams.num_cells + 2

  normal_cell = PNasNetNormalCell(hparams.num_conv_filters,
                                  hparams.drop_path_keep_prob, total_num_cells,
238
239
                                  hparams.total_training_steps,
                                  hparams.use_bounded_activation)
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
  with arg_scope(
      [slim.dropout, nasnet_utils.drop_path, slim.batch_norm],
      is_training=is_training):
    with arg_scope(
        [
            slim.avg_pool2d, slim.max_pool2d, slim.conv2d, slim.batch_norm,
            slim.separable_conv2d, nasnet_utils.factorized_reduction,
            nasnet_utils.global_avg_pool, nasnet_utils.get_channel_index,
            nasnet_utils.get_channel_dim
        ],
        data_format=hparams.data_format):
      return _build_pnasnet_base(
          images,
          normal_cell=normal_cell,
          num_classes=num_classes,
          hparams=hparams,
          is_training=is_training,
          final_endpoint=final_endpoint)


build_pnasnet_mobile.default_image_size = 224


maximneumann's avatar
maximneumann committed
263
264
265
266
class PNasNetNormalCell(nasnet_utils.NasNetABaseCell):
  """PNASNet Normal Cell."""

  def __init__(self, num_conv_filters, drop_path_keep_prob, total_num_cells,
267
               total_training_steps, use_bounded_activation=False):
maximneumann's avatar
maximneumann committed
268
269
270
271
272
273
274
275
276
277
278
    # Configuration for the PNASNet-5 model.
    operations = [
        'separable_5x5_2', 'max_pool_3x3', 'separable_7x7_2', 'max_pool_3x3',
        'separable_5x5_2', 'separable_3x3_2', 'separable_3x3_2', 'max_pool_3x3',
        'separable_3x3_2', 'none'
    ]
    used_hiddenstates = [1, 1, 0, 0, 0, 0, 0]
    hiddenstate_indices = [1, 1, 0, 0, 0, 0, 4, 0, 1, 0]

    super(PNasNetNormalCell, self).__init__(
        num_conv_filters, operations, used_hiddenstates, hiddenstate_indices,
279
280
        drop_path_keep_prob, total_num_cells, total_training_steps,
        use_bounded_activation)