image_classification.py 12 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
"""Image classification task definition."""
Fan Yang's avatar
Fan Yang committed
16
from typing import Any, Optional, List, Tuple
Abdullah Rashwan's avatar
Abdullah Rashwan committed
17
from absl import logging
Abdullah Rashwan's avatar
Abdullah Rashwan committed
18
import tensorflow as tf
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
19

20
from official.common import dataset_fn
Abdullah Rashwan's avatar
Abdullah Rashwan committed
21
22
23
24
25
from official.core import base_task
from official.core import task_factory
from official.modeling import tf_utils
from official.vision.beta.configs import image_classification as exp_cfg
from official.vision.beta.dataloaders import classification_input
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26
from official.vision.beta.dataloaders import input_reader_factory
Abdullah Rashwan's avatar
Abdullah Rashwan committed
27
from official.vision.beta.dataloaders import tfds_factory
Abdullah Rashwan's avatar
Abdullah Rashwan committed
28
from official.vision.beta.modeling import factory
29
from official.vision.beta.ops import augment
Abdullah Rashwan's avatar
Abdullah Rashwan committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53


@task_factory.register_task_cls(exp_cfg.ImageClassificationTask)
class ImageClassificationTask(base_task.Task):
  """A task for image classification."""

  def build_model(self):
    """Builds classification model."""
    input_specs = tf.keras.layers.InputSpec(
        shape=[None] + self.task_config.model.input_size)

    l2_weight_decay = self.task_config.losses.l2_weight_decay
    # Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
    # (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
    # (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
    l2_regularizer = (tf.keras.regularizers.l2(
        l2_weight_decay / 2.0) if l2_weight_decay else None)

    model = factory.build_classification_model(
        input_specs=input_specs,
        model_config=self.task_config.model,
        l2_regularizer=l2_regularizer)
    return model

Abdullah Rashwan's avatar
Abdullah Rashwan committed
54
  def initialize(self, model: tf.keras.Model):
Fan Yang's avatar
Fan Yang committed
55
    """Loads pretrained checkpoint."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    if not self.task_config.init_checkpoint:
      return

    ckpt_dir_or_file = self.task_config.init_checkpoint
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)

    # Restoring checkpoint.
    if self.task_config.init_checkpoint_modules == 'all':
      ckpt = tf.train.Checkpoint(**model.checkpoint_items)
      status = ckpt.restore(ckpt_dir_or_file)
      status.assert_consumed()
    elif self.task_config.init_checkpoint_modules == 'backbone':
      ckpt = tf.train.Checkpoint(backbone=model.backbone)
      status = ckpt.restore(ckpt_dir_or_file)
      status.expect_partial().assert_existing_objects_matched()
    else:
Yeqing Li's avatar
Yeqing Li committed
73
74
      raise ValueError(
          "Only 'all' or 'backbone' can be used to initialize the model.")
Abdullah Rashwan's avatar
Abdullah Rashwan committed
75
76
77
78

    logging.info('Finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
79
80
81
82
83
  def build_inputs(
      self,
      params: exp_cfg.DataConfig,
      input_context: Optional[tf.distribute.InputContext] = None
  ) -> tf.data.Dataset:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
84
85
86
87
    """Builds classification input."""

    num_classes = self.task_config.model.num_classes
    input_size = self.task_config.model.input_size
Fan Yang's avatar
Fan Yang committed
88
89
    image_field_key = self.task_config.train_data.image_field_key
    label_field_key = self.task_config.train_data.label_field_key
Abdullah Rashwan's avatar
Abdullah Rashwan committed
90
    is_multilabel = self.task_config.train_data.is_multilabel
Abdullah Rashwan's avatar
Abdullah Rashwan committed
91

92
    if params.tfds_name:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
93
      decoder = tfds_factory.get_classification_decoder(params.tfds_name)
94
    else:
Fan Yang's avatar
Fan Yang committed
95
      decoder = classification_input.Decoder(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
96
97
          image_field_key=image_field_key, label_field_key=label_field_key,
          is_multilabel=is_multilabel)
98

Abdullah Rashwan's avatar
Abdullah Rashwan committed
99
100
101
    parser = classification_input.Parser(
        output_size=input_size[:2],
        num_classes=num_classes,
Fan Yang's avatar
Fan Yang committed
102
103
        image_field_key=image_field_key,
        label_field_key=label_field_key,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
104
        decode_jpeg_only=params.decode_jpeg_only,
105
106
        aug_rand_hflip=params.aug_rand_hflip,
        aug_type=params.aug_type,
107
108
        color_jitter=params.color_jitter,
        random_erasing=params.random_erasing,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
109
        is_multilabel=is_multilabel,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
110
111
        dtype=params.dtype)

112
113
114
115
116
117
118
119
120
121
    postprocess_fn = None
    if params.mixup_and_cutmix:
      postprocess_fn = augment.MixupAndCutmix(
          mixup_alpha=params.mixup_and_cutmix.mixup_alpha,
          cutmix_alpha=params.mixup_and_cutmix.cutmix_alpha,
          prob=params.mixup_and_cutmix.prob,
          label_smoothing=params.mixup_and_cutmix.label_smoothing,
          num_classes=params.mixup_and_cutmix.num_classes
      )

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
122
    reader = input_reader_factory.input_reader_generator(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
123
        params,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
124
        dataset_fn=dataset_fn.pick_dataset_fn(params.file_type),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
125
        decoder_fn=decoder.decode,
126
127
        parser_fn=parser.parse_fn(params.is_training),
        postprocess_fn=postprocess_fn)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
128
129
130
131
132

    dataset = reader.read(input_context=input_context)

    return dataset

Fan Yang's avatar
Fan Yang committed
133
134
135
  def build_losses(self,
                   labels: tf.Tensor,
                   model_outputs: tf.Tensor,
136
                   is_validation: bool,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
137
                   aux_losses: Optional[Any] = None) -> tf.Tensor:
Fan Yang's avatar
Fan Yang committed
138
    """Builds sparse categorical cross entropy loss.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
139
140

    Args:
Fan Yang's avatar
Fan Yang committed
141
      labels: Input groundtruth labels.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
142
      model_outputs: Output logits of the classifier.
143
144
      is_validation: To handle that some augmentations need custom soft labels
        while the validation should remain unchainged.
Fan Yang's avatar
Fan Yang committed
145
      aux_losses: The auxiliarly loss tensors, i.e. `losses` in tf.keras.Model.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
146
147
148
149
150

    Returns:
      The total loss tensor.
    """
    losses_config = self.task_config.losses
Abdullah Rashwan's avatar
Abdullah Rashwan committed
151
152
153
    is_multilabel = self.task_config.train_data.is_multilabel

    if not is_multilabel:
154
155
156
      # Some augmentation need custom soft labels in training, but validation
      # should remain unchainged
      if losses_config.one_hot or is_validation:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
157
158
159
160
161
        total_loss = tf.keras.losses.categorical_crossentropy(
            labels,
            model_outputs,
            from_logits=True,
            label_smoothing=losses_config.label_smoothing)
162
163
164
165
166
      elif losses_config.soft_labels:
        total_loss = tf.nn.softmax_cross_entropy_with_logits(
            labels,
            model_outputs
        )
Abdullah Rashwan's avatar
Abdullah Rashwan committed
167
168
169
      else:
        total_loss = tf.keras.losses.sparse_categorical_crossentropy(
            labels, model_outputs, from_logits=True)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
170
    else:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
171
172
173
174
      # Multi-label weighted binary cross entropy loss.
      total_loss = tf.nn.sigmoid_cross_entropy_with_logits(
          labels=labels, logits=model_outputs)
      total_loss = tf.reduce_sum(total_loss, axis=-1)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
175
176
177
178
179
180
181

    total_loss = tf_utils.safe_mean(total_loss)
    if aux_losses:
      total_loss += tf.add_n(aux_losses)

    return total_loss

Abdullah Rashwan's avatar
Abdullah Rashwan committed
182
183
  def build_metrics(self,
                    training: bool = True) -> List[tf.keras.metrics.Metric]:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
184
    """Gets streaming metrics for training/validation."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
185
186
187
    is_multilabel = self.task_config.train_data.is_multilabel
    if not is_multilabel:
      k = self.task_config.evaluation.top_k
188
189
      if (self.task_config.losses.one_hot
              or self.task_config.losses.soft_labels):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
190
191
192
193
194
195
196
197
198
        metrics = [
            tf.keras.metrics.CategoricalAccuracy(name='accuracy'),
            tf.keras.metrics.TopKCategoricalAccuracy(
                k=k, name='top_{}_accuracy'.format(k))]
      else:
        metrics = [
            tf.keras.metrics.SparseCategoricalAccuracy(name='accuracy'),
            tf.keras.metrics.SparseTopKCategoricalAccuracy(
                k=k, name='top_{}_accuracy'.format(k))]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
199
    else:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
200
201
202
203
204
205
206
207
208
209
210
211
      metrics = []
      # These metrics destablize the training if included in training. The jobs
      # fail due to OOM.
      # TODO(arashwan): Investigate adding following metric to train.
      if not training:
        metrics = [
            tf.keras.metrics.AUC(
                name='globalPR-AUC',
                curve='PR',
                multi_label=False,
                from_logits=True),
            tf.keras.metrics.AUC(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
212
                name='meanPR-AUC',
Abdullah Rashwan's avatar
Abdullah Rashwan committed
213
214
215
216
217
                curve='PR',
                multi_label=True,
                num_labels=self.task_config.model.num_classes,
                from_logits=True),
        ]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
218
219
    return metrics

Fan Yang's avatar
Fan Yang committed
220
221
222
223
224
  def train_step(self,
                 inputs: Tuple[Any, Any],
                 model: tf.keras.Model,
                 optimizer: tf.keras.optimizers.Optimizer,
                 metrics: Optional[List[Any]] = None):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
225
226
227
    """Does forward and backward.

    Args:
Fan Yang's avatar
Fan Yang committed
228
229
230
231
      inputs: A tuple of of input tensors of (features, labels).
      model: A tf.keras.Model instance.
      optimizer: The optimizer for this training step.
      metrics: A nested structure of metrics objects.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
232
233
234
235
236

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs
Abdullah Rashwan's avatar
Abdullah Rashwan committed
237
238
    is_multilabel = self.task_config.train_data.is_multilabel
    if self.task_config.losses.one_hot and not is_multilabel:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
239
240
241
242
243
244
245
246
247
248
249
      labels = tf.one_hot(labels, self.task_config.model.num_classes)

    num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
    with tf.GradientTape() as tape:
      outputs = model(features, training=True)
      # Casting output layer as float32 is necessary when mixed_precision is
      # mixed_float16 or mixed_bfloat16 to ensure output is casted as float32.
      outputs = tf.nest.map_structure(
          lambda x: tf.cast(x, tf.float32), outputs)

      # Computes per-replica loss.
250
251
      loss = self.build_losses(model_outputs=outputs, labels=labels,
                               is_validation=False, aux_losses=model.losses)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
252
253
254
255
256
257
258
      # Scales loss as the default gradients allreduce performs sum inside the
      # optimizer.
      scaled_loss = loss / num_replicas

      # For mixed_precision policy, when LossScaleOptimizer is used, loss is
      # scaled for numerical stability.
      if isinstance(
Pankaj Kanwar's avatar
Pankaj Kanwar committed
259
          optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
260
261
262
263
264
265
266
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    # Scales back gradient before apply_gradients when LossScaleOptimizer is
    # used.
    if isinstance(
Pankaj Kanwar's avatar
Pankaj Kanwar committed
267
        optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
268
269
270
271
272
273
274
275
276
277
278
      grads = optimizer.get_unscaled_gradients(grads)
    optimizer.apply_gradients(list(zip(grads, tvars)))

    logs = {self.loss: loss}
    if metrics:
      self.process_metrics(metrics, labels, outputs)
    elif model.compiled_metrics:
      self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
      logs.update({m.name: m.result() for m in model.metrics})
    return logs

Fan Yang's avatar
Fan Yang committed
279
280
281
282
283
  def validation_step(self,
                      inputs: Tuple[Any, Any],
                      model: tf.keras.Model,
                      metrics: Optional[List[Any]] = None):
    """Runs validatation step.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
284
285

    Args:
Fan Yang's avatar
Fan Yang committed
286
287
288
      inputs: A tuple of of input tensors of (features, labels).
      model: A tf.keras.Model instance.
      metrics: A nested structure of metrics objects.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
289
290
291
292
293

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs
294
295
    one_hot = self.task_config.losses.one_hot
    soft_labels = self.task_config.losses.soft_labels
Abdullah Rashwan's avatar
Abdullah Rashwan committed
296
    is_multilabel = self.task_config.train_data.is_multilabel
297
    if (one_hot or soft_labels) and not is_multilabel:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
298
299
300
301
302
      labels = tf.one_hot(labels, self.task_config.model.num_classes)

    outputs = self.inference_step(features, model)
    outputs = tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), outputs)
    loss = self.build_losses(model_outputs=outputs, labels=labels,
303
                             is_validation=True, aux_losses=model.losses)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
304
305
306
307
308
309
310
311
312

    logs = {self.loss: loss}
    if metrics:
      self.process_metrics(metrics, labels, outputs)
    elif model.compiled_metrics:
      self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
      logs.update({m.name: m.result() for m in model.metrics})
    return logs

Fan Yang's avatar
Fan Yang committed
313
  def inference_step(self, inputs: tf.Tensor, model: tf.keras.Model):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
314
315
    """Performs the forward step."""
    return model(inputs, training=False)