image_classification.py 8.24 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Image classification task definition."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
17
from absl import logging
Abdullah Rashwan's avatar
Abdullah Rashwan committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import tensorflow as tf
from official.core import base_task
from official.core import input_reader
from official.core import task_factory
from official.modeling import tf_utils
from official.vision.beta.configs import image_classification as exp_cfg
from official.vision.beta.dataloaders import classification_input
from official.vision.beta.modeling import factory


@task_factory.register_task_cls(exp_cfg.ImageClassificationTask)
class ImageClassificationTask(base_task.Task):
  """A task for image classification."""

  def build_model(self):
    """Builds classification model."""
    input_specs = tf.keras.layers.InputSpec(
        shape=[None] + self.task_config.model.input_size)

    l2_weight_decay = self.task_config.losses.l2_weight_decay
    # Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
    # (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
    # (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
    l2_regularizer = (tf.keras.regularizers.l2(
        l2_weight_decay / 2.0) if l2_weight_decay else None)

    model = factory.build_classification_model(
        input_specs=input_specs,
        model_config=self.task_config.model,
        l2_regularizer=l2_regularizer)
    return model

Abdullah Rashwan's avatar
Abdullah Rashwan committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
  def initialize(self, model: tf.keras.Model):
    """Loading pretrained checkpoint."""
    if not self.task_config.init_checkpoint:
      return

    ckpt_dir_or_file = self.task_config.init_checkpoint
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)

    # Restoring checkpoint.
    if self.task_config.init_checkpoint_modules == 'all':
      ckpt = tf.train.Checkpoint(**model.checkpoint_items)
      status = ckpt.restore(ckpt_dir_or_file)
      status.assert_consumed()
    elif self.task_config.init_checkpoint_modules == 'backbone':
      ckpt = tf.train.Checkpoint(backbone=model.backbone)
      status = ckpt.restore(ckpt_dir_or_file)
      status.expect_partial().assert_existing_objects_matched()
    else:
      assert "Only 'all' or 'backbone' can be used to initialize the model."

    logging.info('Finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
74
75
76
77
78
79
80
81
82
83
  def build_inputs(self, params, input_context=None):
    """Builds classification input."""

    num_classes = self.task_config.model.num_classes
    input_size = self.task_config.model.input_size

    decoder = classification_input.Decoder()
    parser = classification_input.Parser(
        output_size=input_size[:2],
        num_classes=num_classes,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
84
        aug_policy=params.aug_policy,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        dtype=params.dtype)

    reader = input_reader.InputReader(
        params,
        dataset_fn=tf.data.TFRecordDataset,
        decoder_fn=decoder.decode,
        parser_fn=parser.parse_fn(params.is_training))

    dataset = reader.read(input_context=input_context)

    return dataset

  def build_losses(self, labels, model_outputs, aux_losses=None):
    """Sparse categorical cross entropy loss.

    Args:
      labels: labels.
      model_outputs: Output logits of the classifier.
      aux_losses: auxiliarly loss tensors, i.e. `losses` in keras.Model.

    Returns:
      The total loss tensor.
    """
    losses_config = self.task_config.losses
    if losses_config.one_hot:
      total_loss = tf.keras.losses.categorical_crossentropy(
          labels,
          model_outputs,
          from_logits=True,
          label_smoothing=losses_config.label_smoothing)
    else:
      total_loss = tf.keras.losses.sparse_categorical_crossentropy(
          labels, model_outputs, from_logits=True)

    total_loss = tf_utils.safe_mean(total_loss)
    if aux_losses:
      total_loss += tf.add_n(aux_losses)

    return total_loss

  def build_metrics(self, training=True):
    """Gets streaming metrics for training/validation."""
Pengchong Jin's avatar
Pengchong Jin committed
127
    k = self.task_config.evaluation.top_k
Abdullah Rashwan's avatar
Abdullah Rashwan committed
128
129
130
    if self.task_config.losses.one_hot:
      metrics = [
          tf.keras.metrics.CategoricalAccuracy(name='accuracy'),
Pengchong Jin's avatar
Pengchong Jin committed
131
132
          tf.keras.metrics.TopKCategoricalAccuracy(
              k=k, name='top_{}_accuracy'.format(k))]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
133
134
135
136
    else:
      metrics = [
          tf.keras.metrics.SparseCategoricalAccuracy(name='accuracy'),
          tf.keras.metrics.SparseTopKCategoricalAccuracy(
Pengchong Jin's avatar
Pengchong Jin committed
137
              k=k, name='top_{}_accuracy'.format(k))]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    return metrics

  def train_step(self, inputs, model, optimizer, metrics=None):
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs
    if self.task_config.losses.one_hot:
      labels = tf.one_hot(labels, self.task_config.model.num_classes)

    num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
    with tf.GradientTape() as tape:
      outputs = model(features, training=True)
      # Casting output layer as float32 is necessary when mixed_precision is
      # mixed_float16 or mixed_bfloat16 to ensure output is casted as float32.
      outputs = tf.nest.map_structure(
          lambda x: tf.cast(x, tf.float32), outputs)

      # Computes per-replica loss.
      loss = self.build_losses(
          model_outputs=outputs, labels=labels, aux_losses=model.losses)
      # Scales loss as the default gradients allreduce performs sum inside the
      # optimizer.
      scaled_loss = loss / num_replicas

      # For mixed_precision policy, when LossScaleOptimizer is used, loss is
      # scaled for numerical stability.
      if isinstance(
Pankaj Kanwar's avatar
Pankaj Kanwar committed
174
          optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
175
176
177
178
179
180
181
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    # Scales back gradient before apply_gradients when LossScaleOptimizer is
    # used.
    if isinstance(
Pankaj Kanwar's avatar
Pankaj Kanwar committed
182
        optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
      grads = optimizer.get_unscaled_gradients(grads)
    optimizer.apply_gradients(list(zip(grads, tvars)))

    logs = {self.loss: loss}
    if metrics:
      self.process_metrics(metrics, labels, outputs)
      logs.update({m.name: m.result() for m in metrics})
    elif model.compiled_metrics:
      self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
      logs.update({m.name: m.result() for m in model.metrics})
    return logs

  def validation_step(self, inputs, model, metrics=None):
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs
    if self.task_config.losses.one_hot:
      labels = tf.one_hot(labels, self.task_config.model.num_classes)

    outputs = self.inference_step(features, model)
    outputs = tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), outputs)
    loss = self.build_losses(model_outputs=outputs, labels=labels,
                             aux_losses=model.losses)

    logs = {self.loss: loss}
    if metrics:
      self.process_metrics(metrics, labels, outputs)
      logs.update({m.name: m.result() for m in metrics})
    elif model.compiled_metrics:
      self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
      logs.update({m.name: m.result() for m in model.metrics})
    return logs

  def inference_step(self, inputs, model):
    """Performs the forward step."""
    return model(inputs, training=False)