video_classification.py 8.14 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Video classification configuration definition."""
from typing import Optional, Tuple
import dataclasses
19
from official.core import config_definitions as cfg
Abdullah Rashwan's avatar
Abdullah Rashwan committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.vision.beta.configs import backbones_3d
from official.vision.beta.configs import common


@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """The base configuration for building datasets."""
  name: Optional[str] = None
  file_type: Optional[str] = 'tfrecord'
  compressed_input: bool = False
  split: str = 'train'
  feature_shape: Tuple[int, ...] = (64, 224, 224, 3)
  temporal_stride: int = 1
  num_test_clips: int = 1
  num_classes: int = -1
  num_channels: int = 3
  num_examples: int = -1
  global_batch_size: int = 128
  num_devices: int = 1
  data_format: str = 'channels_last'
  dtype: str = 'float32'
  one_hot: bool = True
  shuffle_buffer_size: int = 64
  cache: bool = False
  input_path: str = ''
  is_training: bool = True
  cycle_length: int = 10
Yeqing Li's avatar
Yeqing Li committed
50
  drop_remainder: bool = True
Abdullah Rashwan's avatar
Abdullah Rashwan committed
51
  min_image_size: int = 256
Yeqing Li's avatar
Yeqing Li committed
52
  is_multilabel: bool = False
Yeqing Li's avatar
Yeqing Li committed
53
54
55
  output_audio: bool = False
  audio_feature: str = ''
  audio_feature_shape: Tuple[int, ...] = (-1,)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
56
57


Yin Cui's avatar
Yin Cui committed
58
59
60
61
62
63
64
def kinetics400(is_training):
  """Generated Kinectics 400 dataset configs."""
  return DataConfig(
      name='kinetics400',
      num_classes=400,
      is_training=is_training,
      split='train' if is_training else 'valid',
Yeqing Li's avatar
Yeqing Li committed
65
      drop_remainder=is_training,
Yin Cui's avatar
Yin Cui committed
66
67
68
69
      num_examples=215570 if is_training else 17706,
      feature_shape=(64, 224, 224, 3) if is_training else (250, 224, 224, 3))


Abdullah Rashwan's avatar
Abdullah Rashwan committed
70
71
72
73
74
75
76
def kinetics600(is_training):
  """Generated Kinectics 600 dataset configs."""
  return DataConfig(
      name='kinetics600',
      num_classes=600,
      is_training=is_training,
      split='train' if is_training else 'valid',
Yeqing Li's avatar
Yeqing Li committed
77
      drop_remainder=is_training,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
78
79
80
81
82
83
84
      num_examples=366016 if is_training else 27780,
      feature_shape=(64, 224, 224, 3) if is_training else (250, 224, 224, 3))


@dataclasses.dataclass
class VideoClassificationModel(hyperparams.Config):
  """The model config."""
Yeqing Li's avatar
Yeqing Li committed
85
  model_type: str = 'video_classification'
Abdullah Rashwan's avatar
Abdullah Rashwan committed
86
87
88
89
  backbone: backbones_3d.Backbone3D = backbones_3d.Backbone3D(
      type='resnet_3d', resnet_3d=backbones_3d.ResNet3D50())
  norm_activation: common.NormActivation = common.NormActivation()
  dropout_rate: float = 0.2
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
90
  aggregate_endpoints: bool = False
Abdullah Rashwan's avatar
Abdullah Rashwan committed
91
92
93
94
95
96
97
98
99
100
101
102
103


@dataclasses.dataclass
class Losses(hyperparams.Config):
  one_hot: bool = True
  label_smoothing: float = 0.0
  l2_weight_decay: float = 0.0


@dataclasses.dataclass
class VideoClassificationTask(cfg.TaskConfig):
  """The task config."""
  model: VideoClassificationModel = VideoClassificationModel()
Yeqing Li's avatar
Yeqing Li committed
104
105
106
  train_data: DataConfig = DataConfig(is_training=True, drop_remainder=True)
  validation_data: DataConfig = DataConfig(
      is_training=False, drop_remainder=False)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
  losses: Losses = Losses()


def add_trainer(experiment: cfg.ExperimentConfig,
                train_batch_size: int,
                eval_batch_size: int,
                learning_rate: float = 1.6,
                train_epochs: int = 44,
                warmup_epochs: int = 5):
  """Add and config a trainer to the experiment config."""
  if experiment.task.train_data.num_examples <= 0:
    raise ValueError('Wrong train dataset size {!r}'.format(
        experiment.task.train_data))
  if experiment.task.validation_data.num_examples <= 0:
    raise ValueError('Wrong validation dataset size {!r}'.format(
        experiment.task.validation_data))
  experiment.task.train_data.global_batch_size = train_batch_size
  experiment.task.validation_data.global_batch_size = eval_batch_size
  steps_per_epoch = experiment.task.train_data.num_examples // train_batch_size
  experiment.trainer = cfg.TrainerConfig(
      steps_per_loop=steps_per_epoch,
      summary_interval=steps_per_epoch,
      checkpoint_interval=steps_per_epoch,
      train_steps=train_epochs * steps_per_epoch,
      validation_steps=experiment.task.validation_data.num_examples //
      eval_batch_size,
      validation_interval=steps_per_epoch,
      optimizer_config=optimization.OptimizationConfig({
          'optimizer': {
              'type': 'sgd',
              'sgd': {
                  'momentum': 0.9,
                  'nesterov': True,
              }
          },
          'learning_rate': {
              'type': 'cosine',
              'cosine': {
                  'initial_learning_rate': learning_rate,
                  'decay_steps': train_epochs * steps_per_epoch,
              }
          },
          'warmup': {
              'type': 'linear',
              'linear': {
                  'warmup_steps': warmup_epochs * steps_per_epoch,
                  'warmup_learning_rate': 0
              }
          }
      }))
  return experiment


@exp_factory.register_config_factory('video_classification')
def video_classification() -> cfg.ExperimentConfig:
  """Video classification general."""
  return cfg.ExperimentConfig(
Yeqing Li's avatar
Yeqing Li committed
164
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
165
166
167
168
169
170
171
172
173
      task=VideoClassificationTask(),
      trainer=cfg.TrainerConfig(),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None',
          'task.train_data.num_classes == task.validation_data.num_classes',
      ])


Yin Cui's avatar
Yin Cui committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
@exp_factory.register_config_factory('video_classification_kinetics400')
def video_classification_kinetics400() -> cfg.ExperimentConfig:
  """Video classification on Kinectics 400 with resnet."""
  train_dataset = kinetics400(is_training=True)
  validation_dataset = kinetics400(is_training=False)
  task = VideoClassificationTask(
      model=VideoClassificationModel(
          backbone=backbones_3d.Backbone3D(
              type='resnet_3d', resnet_3d=backbones_3d.ResNet3D50()),
          norm_activation=common.NormActivation(
              norm_momentum=0.9, norm_epsilon=1e-5)),
      losses=Losses(l2_weight_decay=1e-4),
      train_data=train_dataset,
      validation_data=validation_dataset)
  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=task,
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None',
          'task.train_data.num_classes == task.validation_data.num_classes',
      ])
  add_trainer(config, train_batch_size=1024, eval_batch_size=64)
  return config


Abdullah Rashwan's avatar
Abdullah Rashwan committed
200
201
@exp_factory.register_config_factory('video_classification_kinetics600')
def video_classification_kinetics600() -> cfg.ExperimentConfig:
Yin Cui's avatar
Yin Cui committed
202
  """Video classification on Kinectics 600 with resnet."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
203
204
205
206
207
208
209
210
211
212
213
214
  train_dataset = kinetics600(is_training=True)
  validation_dataset = kinetics600(is_training=False)
  task = VideoClassificationTask(
      model=VideoClassificationModel(
          backbone=backbones_3d.Backbone3D(
              type='resnet_3d', resnet_3d=backbones_3d.ResNet3D50()),
          norm_activation=common.NormActivation(
              norm_momentum=0.9, norm_epsilon=1e-5)),
      losses=Losses(l2_weight_decay=1e-4),
      train_data=train_dataset,
      validation_data=validation_dataset)
  config = cfg.ExperimentConfig(
Yeqing Li's avatar
Yeqing Li committed
215
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
216
217
218
219
220
221
222
223
      task=task,
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None',
          'task.train_data.num_classes == task.validation_data.num_classes',
      ])
  add_trainer(config, train_batch_size=1024, eval_batch_size=64)
  return config