keras_cifar_main.py 7.57 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Runs a ResNet model on the ImageNet dataset."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time

from absl import app as absl_app
from absl import flags
import numpy as np
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.resnet import cifar10_main as cifar_main
from official.resnet import resnet_run_loop
30
from official.resnet.keras import keras_common
31
32
33
34
35
36
37
from official.resnet.keras import keras_resnet_model
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import distribution_utils
from tensorflow.python.keras.optimizer_v2 import gradient_descent as gradient_descent_v2


38
39
40
# LR_SCHEDULE = [    # (multiplier, epoch to start) tuples
#     (1.0, 5), (0.1, 30), (0.01, 60), (0.001, 80)
# ]
41
42
LR_SCHEDULE = [  # (multiplier, epoch to start) tuples
    (0.1, 91), (0.01, 136), (0.001, 182)
43
44
]

45
46
47
BASE_LEARNING_RATE = 0.1

def learning_rate_schedule(current_epoch, current_batch, batches_per_epoch, batch_size):
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
  """Handles linear scaling rule, gradual warmup, and LR decay.

  The learning rate starts at 0, then it increases linearly per step.
  After 5 epochs we reach the base learning rate (scaled to account
    for batch size).
  After 30, 60 and 80 epochs the learning rate is divided by 10.
  After 90 epochs training stops and the LR is set to 0. This ensures
    that we train for exactly 90 epochs for reproducibility.

  Args:
    current_epoch: integer, current epoch indexed from 0.
    current_batch: integer, current batch in the current epoch, indexed from 0.

  Returns:
    Adjusted learning rate.
  """
64
65
66
67
68
69
70
71
72
73
74
75
  # epoch = current_epoch + float(current_batch) / batches_per_epoch
  # warmup_lr_multiplier, warmup_end_epoch = LR_SCHEDULE[0]
  # if epoch < warmup_end_epoch:
  #   # Learning rate increases linearly per step.
  #   return BASE_LEARNING_RATE * warmup_lr_multiplier * epoch / warmup_end_epoch
  # for mult, start_epoch in LR_SCHEDULE:
  #   if epoch >= start_epoch:
  #     learning_rate = BASE_LEARNING_RATE * mult
  #   else:
  #     break
  # return learning_rate

76
77
  initial_learning_rate = BASE_LEARNING_RATE * batch_size / 128
  learning_rate = initial_learning_rate
78
  for mult, start_epoch in LR_SCHEDULE:
79
80
    if current_epoch >= start_epoch:
      learning_rate = initial_learning_rate * mult
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    else:
      break
  return learning_rate


def parse_record_keras(raw_record, is_training, dtype):
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

  Args:
    raw_record: scalar Tensor tf.string containing a serialized
      Example protocol buffer.
    is_training: A boolean denoting whether the input is for training.
    dtype: Data type to use for input images.

  Returns:
    Tuple with processed image tensor and one-hot-encoded label tensor.
  """
  image, label = cifar_main.parse_record(raw_record, is_training, dtype)
  label = tf.sparse_to_dense(label, (cifar_main._NUM_CLASSES,), 1)
  return image, label


def run_cifar_with_keras(flags_obj):
  """Run ResNet ImageNet training and eval loop using native Keras APIs.

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.
  """
115
116
117
  if flags_obj.enable_eager:
    tf.enable_eager_execution()

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
  dtype = flags_core.get_tf_dtype(flags_obj)
  if dtype == 'fp16':
    raise ValueError('dtype fp16 is not supported in Keras. Use the default '
                     'value(fp32).')

  per_device_batch_size = distribution_utils.per_device_batch_size(
      flags_obj.batch_size, flags_core.get_num_gpus(flags_obj))

  # pylint: disable=protected-access
  if flags_obj.use_synthetic_data:
    synth_input_fn = resnet_run_loop.get_synth_input_fn(
        cifar_main._HEIGHT, cifar_main._WIDTH,
        cifar_main._NUM_CHANNELS, cifar_main._NUM_CLASSES,
        dtype=flags_core.get_tf_dtype(flags_obj))
    train_input_dataset = synth_input_fn(
        True,
        flags_obj.data_dir,
        batch_size=per_device_batch_size,
        height=cifar_main._HEIGHT,
        width=cifar_main._WIDTH,
        num_channels=cifar_main._NUM_CHANNELS,
        num_classes=cifar_main._NUM_CLASSES,
        dtype=dtype)
    eval_input_dataset = synth_input_fn(
        False,
        flags_obj.data_dir,
        batch_size=per_device_batch_size,
        height=cifar_main._HEIGHT,
        width=cifar_main._WIDTH,
        num_channels=cifar_main._NUM_CHANNELS,
        num_classes=cifar_main._NUM_CLASSES,
        dtype=dtype)
  # pylint: enable=protected-access

  else:
    train_input_dataset = cifar_main.input_fn(
154
155
156
157
158
        True,
        flags_obj.data_dir,
        batch_size=per_device_batch_size,
        num_epochs=flags_obj.train_epochs,
        parse_record_fn=parse_record_keras)
159
160

    eval_input_dataset = cifar_main.input_fn(
161
162
163
164
165
        False,
        flags_obj.data_dir,
        batch_size=per_device_batch_size,
        num_epochs=flags_obj.train_epochs,
        parse_record_fn=parse_record_keras)
166

167
168
  opt, loss, accuracy = keras_common.get_optimizer_loss_and_metrics()
  strategy = keras_common.get_dist_strategy()
169
170

  model = keras_resnet_model.ResNet56(input_shape=(32, 32, 3),
171
172
173
                                      include_top=True,
                                      classes=cifar_main._NUM_CLASSES,
                                      weights=None)
174
175
176
177
178
  model.compile(loss=loss,
                optimizer=opt,
                metrics=[accuracy],
                distribute=strategy)
  time_callback, tensorboard_callback, lr_callback = keras_common.get_fit_callbacks()
179
180
181

  steps_per_epoch = cifar_main._NUM_IMAGES['train'] // flags_obj.batch_size
  num_eval_steps = (cifar_main._NUM_IMAGES['validation'] //
182
183
184
185
186
187
188
189
190
191
                    flags_obj.batch_size)

  history = model.fit(train_input_dataset,
                      epochs=flags_obj.train_epochs,
                      steps_per_epoch=steps_per_epoch,
                      callbacks=[
                          time_callback,
                          lr_callback,
                          tesorboard_callback
                      ],
192
193
                      validation_steps=num_eval_steps,
                      validation_data=eval_input_dataset,
194
195
                      verbose=1)

196
197
198
199
  eval_output = model.evaluate(eval_input_dataset,
                               steps=num_eval_steps,
                               verbose=1)

200
201
  print('Test loss:', eval_output[0])
  stats = keras_common.analyze_eval_result(eval_output)
202
203

  return stats
204

205
206
207
208
209
210

def define_keras_cifar_flags():
  flags.DEFINE_boolean(name='enable_eager', default=False, help='Enable eager?')


def main(_):
211
212
213
214
215
216
  with logger.benchmark_context(flags.FLAGS):
    run_cifar_with_keras(flags.FLAGS)


if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.DEBUG)
217
  define_keras_cifar_flags()
218
219
  cifar_main.define_cifar_flags()
  absl_app.run(main)