model.py 27.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions to build the Attention OCR model.

Usage example:
  ocr_model = model.Model(num_char_classes, seq_length, num_of_views)

  data = ... # create namedtuple InputEndpoints
  endpoints = model.create_base(data.images, data.labels_one_hot)
  # endpoints.predicted_chars is a tensor with predicted character codes.
  total_loss = model.create_loss(data, endpoints)
"""
import sys
import collections
import logging
28
import numpy as np
29
30
31
32
33
34
35
36
37
import tensorflow as tf
from tensorflow.contrib import slim
from tensorflow.contrib.slim.nets import inception

import metrics
import sequence_layers
import utils

OutputEndpoints = collections.namedtuple('OutputEndpoints', [
38
39
40
    'chars_logit', 'chars_log_prob', 'predicted_chars', 'predicted_scores',
    'predicted_text', 'predicted_length', 'predicted_conf',
    'normalized_seq_conf'
41
42
43
])

# TODO(gorban): replace with tf.HParams when it is released.
44
45
ModelParams = collections.namedtuple(
    'ModelParams', ['num_char_classes', 'seq_length', 'num_views', 'null_code'])
46
47
48
49

ConvTowerParams = collections.namedtuple('ConvTowerParams', ['final_endpoint'])

SequenceLogitsParams = collections.namedtuple('SequenceLogitsParams', [
50
51
    'use_attention', 'use_autoregression', 'num_lstm_units', 'weight_decay',
    'lstm_state_clip_value'
52
53
])

54
55
56
SequenceLossParams = collections.namedtuple(
    'SequenceLossParams',
    ['label_smoothing', 'ignore_nulls', 'average_across_timesteps'])
57

58
59
EncodeCoordinatesParams = collections.namedtuple('EncodeCoordinatesParams',
                                                 ['enabled'])
Alexander Gorban's avatar
Alexander Gorban committed
60

61
62
63
64

def _dict_to_array(id_to_char, default_character):
  num_char_classes = max(id_to_char.keys()) + 1
  array = [default_character] * num_char_classes
65
  for k, v in id_to_char.items():
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    array[k] = v
  return array


class CharsetMapper(object):
  """A simple class to map tensor ids into strings.

    It works only when the character set is 1:1 mapping between individual
    characters and individual ids.

    Make sure you call tf.tables_initializer().run() as part of the init op.
    """

  def __init__(self, charset, default_character='?'):
    """Creates a lookup table.

    Args:
      charset: a dictionary with id-to-character mapping.
    """
    mapping_strings = tf.constant(_dict_to_array(charset, default_character))
    self.table = tf.contrib.lookup.index_to_string_table_from_tensor(
87
        mapping=mapping_strings, default_value=default_character)
88
89
90
91
92
93

  def get_text(self, ids):
    """Returns a string corresponding to a sequence of character ids.

        Args:
          ids: a tensor with shape [batch_size, max_sequence_length]
94
    """
95
    return tf.reduce_join(
96
        self.table.lookup(tf.to_int64(ids)), reduction_indices=1)
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112


def get_softmax_loss_fn(label_smoothing):
  """Returns sparse or dense loss function depending on the label_smoothing.

    Args:
      label_smoothing: weight for label smoothing

    Returns:
      a function which takes labels and predictions as arguments and returns
      a softmax loss for the selected type of labels (sparse or dense).
    """
  if label_smoothing > 0:

    def loss_fn(labels, logits):
      return (tf.nn.softmax_cross_entropy_with_logits(
113
          logits=logits, labels=labels))
114
115
116
117
  else:

    def loss_fn(labels, logits):
      return tf.nn.sparse_softmax_cross_entropy_with_logits(
118
          logits=logits, labels=labels)
119
120
121
122

  return loss_fn


123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
def get_tensor_dimensions(tensor):
  """Returns the shape components of a 4D tensor with variable batch size.

  Args:
    tensor : A 4D tensor, whose last 3 dimensions are known at graph
      construction time.

  Returns:
    batch_size : The first dimension as a tensor object.
    height : The second dimension as a scalar value.
    width : The third dimension as a scalar value.
    num_features : The forth dimension as a scalar value.

  Raises:
    ValueError: if input tensor does not have 4 dimensions.
  """
  if len(tensor.get_shape().dims) != 4:
    raise ValueError(
        'Incompatible shape: len(tensor.get_shape().dims) != 4 (%d != 4)' %
        len(tensor.get_shape().dims))
  batch_size = tf.shape(tensor)[0]
  height = tensor.get_shape().dims[1].value
  width = tensor.get_shape().dims[2].value
  num_features = tensor.get_shape().dims[3].value
  return batch_size, height, width, num_features


def lookup_indexed_value(indices, row_vecs):
  """Lookup values in each row of 'row_vecs' indexed by 'indices'.

  For each sample in the batch, look up the element for the corresponding
  index.

  Args:
    indices : A tensor of shape (batch, )
    row_vecs : A tensor of shape [batch, depth]

  Returns:
    A tensor of shape (batch, ) formed by row_vecs[i, indices[i]].
  """
  gather_indices = tf.stack((tf.range(
      tf.shape(row_vecs)[0], dtype=tf.int32), tf.cast(indices, tf.int32)),
                            axis=1)
  return tf.gather_nd(row_vecs, gather_indices)


@utils.ConvertAllInputsToTensors
def max_char_logprob_cumsum(char_log_prob):
  """Computes the cumulative sum of character logprob for all sequence lengths.

  Args:
    char_log_prob: A tensor of shape [batch x seq_length x num_char_classes]
      with log probabilities of a character.

  Returns:
    A tensor of shape [batch x (seq_length+1)] where each element x[_, j] is
    the sum of the max char logprob for all positions upto j.
    Note this duplicates the final column and produces (seq_length+1) columns
    so the same function can be used regardless whether use_length_predictions
    is true or false.
  """
  max_char_log_prob = tf.reduce_max(char_log_prob, reduction_indices=2)
  # For an input array [a, b, c]) tf.cumsum returns [a, a + b, a + b + c] if
  # exclusive set to False (default).
  return tf.cumsum(max_char_log_prob, axis=1, exclusive=False)


def find_length_by_null(predicted_chars, null_code):
  """Determine sequence length by finding null_code among predicted char IDs.

  Given the char class ID for each position, compute the sequence length.
  Note that this function computes this based on the number of null_code,
  instead of the position of the first null_code.

  Args:
    predicted_chars: A tensor of [batch x seq_length] where each element stores
      the char class ID with max probability;
    null_code: an int32, character id for the NULL.

  Returns:
    A [batch, ] tensor which stores the sequence length for each sample.
  """
  return tf.reduce_sum(
      tf.cast(tf.not_equal(null_code, predicted_chars), tf.int32), axis=1)


def axis_pad(tensor, axis, before=0, after=0, constant_values=0.0):
  """Pad a tensor with the specified values along a single axis.

  Args:
    tensor: a Tensor;
    axis: the dimension to add pad along to;
    before: number of values to add before the contents of tensor in the
      selected dimension;
    after: number of values to add after the contents of tensor in the selected
      dimension;
    constant_values: the scalar pad value to use. Must be same type as tensor.

  Returns:
    A Tensor. Has the same type as the input tensor, but with a changed shape
    along the specified dimension.
  """
  if before == 0 and after == 0:
    return tensor
  ndims = tensor.shape.ndims
  padding_size = np.zeros((ndims, 2), dtype='int32')
  padding_size[axis] = before, after
  return tf.pad(
      tensor=tensor,
      paddings=tf.constant(padding_size),
      constant_values=constant_values)


def null_based_length_prediction(chars_log_prob, null_code):
  """Computes length and confidence of prediction based on positions of NULLs.

  Args:
    chars_log_prob: A tensor of shape [batch x seq_length x num_char_classes]
      with log probabilities of a character;
    null_code: an int32, character id for the NULL.

  Returns:
    A tuple (text_log_prob, predicted_length), where
    text_log_prob - is a tensor of the same shape as length_log_prob.
    Element #0 of the output corresponds to probability of the empty string,
    element #seq_length - is the probability of length=seq_length.
    predicted_length is a tensor with shape [batch].
  """
  predicted_chars = tf.to_int32(tf.argmax(chars_log_prob, axis=2))
  # We do right pad to support sequences with seq_length elements.
  text_log_prob = max_char_logprob_cumsum(
      axis_pad(chars_log_prob, axis=1, after=1))
  predicted_length = find_length_by_null(predicted_chars, null_code)
  return text_log_prob, predicted_length


259
260
261
262
class Model(object):
  """Class to create the Attention OCR Model."""

  def __init__(self,
263
264
265
266
267
268
               num_char_classes,
               seq_length,
               num_views,
               null_code,
               mparams=None,
               charset=None):
269
270
271
272
273
274
    """Initialized model parameters.

    Args:
      num_char_classes: size of character set.
      seq_length: number of characters in a sequence.
      num_views: Number of views (conv towers) to use.
275
276
277
278
      null_code: A character code corresponding to a character which indicates
        end of a sequence.
      mparams: a dictionary with hyper parameters for methods,  keys - function
        names, values - corresponding namedtuples.
279
      charset: an optional dictionary with a mapping between character ids and
280
281
        utf8 strings. If specified the OutputEndpoints.predicted_text will utf8
        encoded strings corresponding to the character ids returned by
282
        OutputEndpoints.predicted_chars (by default the predicted_text contains
283
        an empty vector).
284
        NOTE: Make sure you call tf.tables_initializer().run() if the charset
285
          specified.
286
287
288
    """
    super(Model, self).__init__()
    self._params = ModelParams(
289
290
291
292
        num_char_classes=num_char_classes,
        seq_length=seq_length,
        num_views=num_views,
        null_code=null_code)
293
294
295
    self._mparams = self.default_mparams()
    if mparams:
      self._mparams.update(mparams)
296
    self._charset = charset
297
298
299

  def default_mparams(self):
    return {
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
        'conv_tower_fn':
            ConvTowerParams(final_endpoint='Mixed_5d'),
        'sequence_logit_fn':
            SequenceLogitsParams(
                use_attention=True,
                use_autoregression=True,
                num_lstm_units=256,
                weight_decay=0.00004,
                lstm_state_clip_value=10.0),
        'sequence_loss_fn':
            SequenceLossParams(
                label_smoothing=0.1,
                ignore_nulls=True,
                average_across_timesteps=False),
        'encode_coordinates_fn':
            EncodeCoordinatesParams(enabled=False)
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
    }

  def set_mparam(self, function, **kwargs):
    self._mparams[function] = self._mparams[function]._replace(**kwargs)

  def conv_tower_fn(self, images, is_training=True, reuse=None):
    """Computes convolutional features using the InceptionV3 model.

    Args:
      images: A tensor of shape [batch_size, height, width, channels].
      is_training: whether is training or not.
      reuse: whether or not the network and its variables should be reused. To
        be able to reuse 'scope' must be given.

    Returns:
      A tensor of shape [batch_size, OH, OW, N], where OWxOH is resolution of
      output feature map and N is number of output features (depends on the
      network architecture).
    """
    mparams = self._mparams['conv_tower_fn']
    logging.debug('Using final_endpoint=%s', mparams.final_endpoint)
    with tf.variable_scope('conv_tower_fn/INCE'):
      if reuse:
        tf.get_variable_scope().reuse_variables()
340
341
342
343
      with slim.arg_scope(inception.inception_v3_arg_scope()):
        with slim.arg_scope([slim.batch_norm, slim.dropout],
                            is_training=is_training):
          net, _ = inception.inception_v3_base(
344
              images, final_endpoint=mparams.final_endpoint)
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
      return net

  def _create_lstm_inputs(self, net):
    """Splits an input tensor into a list of tensors (features).

    Args:
      net: A feature map of shape [batch_size, num_features, feature_size].

    Raises:
      AssertionError: if num_features is less than seq_length.

    Returns:
      A list with seq_length tensors of shape [batch_size, feature_size]
    """
    num_features = net.get_shape().dims[1].value
    if num_features < self._params.seq_length:
361
362
363
364
      raise AssertionError(
          'Incorrect dimension #1 of input tensor'
          ' %d should be bigger than %d (shape=%s)' %
          (num_features, self._params.seq_length, net.get_shape()))
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    elif num_features > self._params.seq_length:
      logging.warning('Ignoring some features: use %d of %d (shape=%s)',
                      self._params.seq_length, num_features, net.get_shape())
      net = tf.slice(net, [0, 0, 0], [-1, self._params.seq_length, -1])

    return tf.unstack(net, axis=1)

  def sequence_logit_fn(self, net, labels_one_hot):
    mparams = self._mparams['sequence_logit_fn']
    # TODO(gorban): remove /alias suffixes from the scopes.
    with tf.variable_scope('sequence_logit_fn/SQLR'):
      layer_class = sequence_layers.get_layer_class(mparams.use_attention,
                                                    mparams.use_autoregression)
      layer = layer_class(net, labels_one_hot, self._params, mparams)
      return layer.create_logits()

  def max_pool_views(self, nets_list):
    """Max pool across all nets in spatial dimensions.

    Args:
      nets_list: A list of 4D tensors with identical size.

    Returns:
      A tensor with the same size as any input tensors.
    """
    batch_size, height, width, num_features = [
391
        d.value for d in nets_list[0].get_shape().dims
392
393
394
395
396
397
398
399
    ]
    xy_flat_shape = (batch_size, 1, height * width, num_features)
    nets_for_merge = []
    with tf.variable_scope('max_pool_views', values=nets_list):
      for net in nets_list:
        nets_for_merge.append(tf.reshape(net, xy_flat_shape))
      merged_net = tf.concat(nets_for_merge, 1)
      net = slim.max_pool2d(
400
          merged_net, kernel_size=[len(nets_list), 1], stride=1)
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
      net = tf.reshape(net, (batch_size, height, width, num_features))
    return net

  def pool_views_fn(self, nets):
    """Combines output of multiple convolutional towers into a single tensor.

    It stacks towers one on top another (in height dim) in a 4x1 grid.
    The order is arbitrary design choice and shouldn't matter much.

    Args:
      nets: list of tensors of shape=[batch_size, height, width, num_features].

    Returns:
      A tensor of shape [batch_size, seq_length, features_size].
    """
    with tf.variable_scope('pool_views_fn/STCK'):
      net = tf.concat(nets, 1)
418
419
      batch_size = tf.shape(net)[0]
      image_size = net.get_shape().dims[1].value * net.get_shape().dims[2].value
420
      feature_size = net.get_shape().dims[3].value
421
      return tf.reshape(net, tf.stack([batch_size, image_size, feature_size]))
422
423
424
425
426

  def char_predictions(self, chars_logit):
    """Returns confidence scores (softmax values) for predicted characters.

    Args:
427
428
      chars_logit: chars logits, a tensor with shape [batch_size x seq_length x
        num_char_classes]
429
430
431
432
433
434
435
436
437
438
439
440

    Returns:
      A tuple (ids, log_prob, scores), where:
        ids - predicted characters, a int32 tensor with shape
          [batch_size x seq_length];
        log_prob - a log probability of all characters, a float tensor with
          shape [batch_size, seq_length, num_char_classes];
        scores - corresponding confidence scores for characters, a float
        tensor
          with shape [batch_size x seq_length].
    """
    log_prob = utils.logits_to_log_prob(chars_logit)
441
    ids = tf.to_int32(tf.argmax(log_prob, axis=2), name='predicted_chars')
442
    mask = tf.cast(
443
        slim.one_hot_encoding(ids, self._params.num_char_classes), tf.bool)
444
445
    all_scores = tf.nn.softmax(chars_logit)
    selected_scores = tf.boolean_mask(all_scores, mask, name='char_scores')
446
447
448
449
    scores = tf.reshape(
        selected_scores,
        shape=(-1, self._params.seq_length),
        name='predicted_scores')
450
451
    return ids, log_prob, scores

Alexander Gorban's avatar
Alexander Gorban committed
452
453
454
455
456
457
458
459
460
461
462
463
464
465
  def encode_coordinates_fn(self, net):
    """Adds one-hot encoding of coordinates to different views in the networks.

    For each "pixel" of a feature map it adds a onehot encoded x and y
    coordinates.

    Args:
      net: a tensor of shape=[batch_size, height, width, num_features]

    Returns:
      a tensor with the same height and width, but altered feature_size.
    """
    mparams = self._mparams['encode_coordinates_fn']
    if mparams.enabled:
466
      batch_size, h, w, _ = get_tensor_dimensions(net)
Alexander Gorban's avatar
Alexander Gorban committed
467
468
469
470
      x, y = tf.meshgrid(tf.range(w), tf.range(h))
      w_loc = slim.one_hot_encoding(x, num_classes=w)
      h_loc = slim.one_hot_encoding(y, num_classes=h)
      loc = tf.concat([h_loc, w_loc], 2)
471
      loc = tf.tile(tf.expand_dims(loc, 0), tf.stack([batch_size, 1, 1, 1]))
Alexander Gorban's avatar
Alexander Gorban committed
472
473
474
475
      return tf.concat([net, loc], 3)
    else:
      return net

476
  def create_base(self,
477
478
479
480
                  images,
                  labels_one_hot,
                  scope='AttentionOcr_v1',
                  reuse=None):
481
482
483
    """Creates a base part of the Model (no gradients, losses or summaries).

    Args:
484
485
      images: A tensor of shape [batch_size, height, width, channels] with pixel
        values in the range [0.0, 1.0].
486
487
488
489
490
491
492
493
494
495
496
      labels_one_hot: Optional (can be None) one-hot encoding for ground truth
        labels. If provided the function will create a model for training.
      scope: Optional variable_scope.
      reuse: whether or not the network and its variables should be reused. To
        be able to reuse 'scope' must be given.

    Returns:
      A named tuple OutputEndpoints.
    """
    logging.debug('images: %s', images)
    is_training = labels_one_hot is not None
497
498
499
500
501

    # Normalize image pixel values to have a symmetrical range around zero.
    images = tf.subtract(images, 0.5)
    images = tf.multiply(images, 2.5)

502
503
    with tf.variable_scope(scope, reuse=reuse):
      views = tf.split(
504
          value=images, num_or_size_splits=self._params.num_views, axis=2)
505
506
507
      logging.debug('Views=%d single view: %s', len(views), views[0])

      nets = [
508
509
          self.conv_tower_fn(v, is_training, reuse=(i != 0))
          for i, v in enumerate(views)
510
511
512
      ]
      logging.debug('Conv tower: %s', nets[0])

Alexander Gorban's avatar
Alexander Gorban committed
513
514
515
      nets = [self.encode_coordinates_fn(net) for net in nets]
      logging.debug('Conv tower w/ encoded coordinates: %s', nets[0])

516
517
518
519
520
521
522
      net = self.pool_views_fn(nets)
      logging.debug('Pooled views: %s', net)

      chars_logit = self.sequence_logit_fn(net, labels_one_hot)
      logging.debug('chars_logit: %s', chars_logit)

      predicted_chars, chars_log_prob, predicted_scores = (
523
          self.char_predictions(chars_logit))
524
525
526
527
528
      if self._charset:
        character_mapper = CharsetMapper(self._charset)
        predicted_text = character_mapper.get_text(predicted_chars)
      else:
        predicted_text = tf.constant([])
529
530
531
532
533
534
535
536
537
538
539
540
541

      text_log_prob, predicted_length = null_based_length_prediction(
          chars_log_prob, self._params.null_code)
      predicted_conf = lookup_indexed_value(predicted_length, text_log_prob)
      # Convert predicted confidence from sum of logs to geometric mean
      normalized_seq_conf = tf.exp(
          tf.divide(predicted_conf,
                    tf.cast(predicted_length + 1, predicted_conf.dtype)),
          name='normalized_seq_conf')
      predicted_conf = tf.identity(predicted_conf, name='predicted_conf')
      predicted_text = tf.identity(predicted_text, name='predicted_text')
      predicted_length = tf.identity(predicted_length, name='predicted_length')

542
    return OutputEndpoints(
543
544
545
546
547
548
549
550
        chars_logit=chars_logit,
        chars_log_prob=chars_log_prob,
        predicted_chars=predicted_chars,
        predicted_scores=predicted_scores,
        predicted_length=predicted_length,
        predicted_text=predicted_text,
        predicted_conf=predicted_conf,
        normalized_seq_conf=normalized_seq_conf)
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577

  def create_loss(self, data, endpoints):
    """Creates all losses required to train the model.

    Args:
      data: InputEndpoints namedtuple.
      endpoints: Model namedtuple.

    Returns:
      Total loss.
    """
    # NOTE: the return value of ModelLoss is not used directly for the
    # gradient computation because under the hood it calls slim.losses.AddLoss,
    # which registers the loss in an internal collection and later returns it
    # as part of GetTotalLoss. We need to use total loss because model may have
    # multiple losses including regularization losses.
    self.sequence_loss_fn(endpoints.chars_logit, data.labels)
    total_loss = slim.losses.get_total_loss()
    tf.summary.scalar('TotalLoss', total_loss)
    return total_loss

  def label_smoothing_regularization(self, chars_labels, weight=0.1):
    """Applies a label smoothing regularization.

    Uses the same method as in https://arxiv.org/abs/1512.00567.

    Args:
578
579
      chars_labels: ground truth ids of charactes, shape=[batch_size,
        seq_length];
580
581
582
583
584
585
      weight: label-smoothing regularization weight.

    Returns:
      A sensor with the same shape as the input.
    """
    one_hot_labels = tf.one_hot(
586
        chars_labels, depth=self._params.num_char_classes, axis=-1)
587
588
589
590
591
592
593
594
595
596
597
    pos_weight = 1.0 - weight
    neg_weight = weight / self._params.num_char_classes
    return one_hot_labels * pos_weight + neg_weight

  def sequence_loss_fn(self, chars_logits, chars_labels):
    """Loss function for char sequence.

    Depending on values of hyper parameters it applies label smoothing and can
    also ignore all null chars after the first one.

    Args:
598
599
600
601
      chars_logits: logits for predicted characters, shape=[batch_size,
        seq_length, num_char_classes];
      chars_labels: ground truth ids of characters, shape=[batch_size,
        seq_length];
602
603
604
605
606
607
608
609
610
      mparams: method hyper parameters.

    Returns:
      A Tensor with shape [batch_size] - the log-perplexity for each sequence.
    """
    mparams = self._mparams['sequence_loss_fn']
    with tf.variable_scope('sequence_loss_fn/SLF'):
      if mparams.label_smoothing > 0:
        smoothed_one_hot_labels = self.label_smoothing_regularization(
611
            chars_labels, mparams.label_smoothing)
612
613
614
615
616
617
618
619
620
621
622
623
        labels_list = tf.unstack(smoothed_one_hot_labels, axis=1)
      else:
        # NOTE: in case of sparse softmax we are not using one-hot
        # encoding.
        labels_list = tf.unstack(chars_labels, axis=1)

      batch_size, seq_length, _ = chars_logits.shape.as_list()
      if mparams.ignore_nulls:
        weights = tf.ones((batch_size, seq_length), dtype=tf.float32)
      else:
        # Suppose that reject character is the last in the charset.
        reject_char = tf.constant(
624
625
626
            self._params.num_char_classes - 1,
            shape=(batch_size, seq_length),
            dtype=tf.int64)
627
628
629
630
631
632
        known_char = tf.not_equal(chars_labels, reject_char)
        weights = tf.to_float(known_char)

      logits_list = tf.unstack(chars_logits, axis=1)
      weights_list = tf.unstack(weights, axis=1)
      loss = tf.contrib.legacy_seq2seq.sequence_loss(
633
634
635
636
637
          logits_list,
          labels_list,
          weights_list,
          softmax_loss_function=get_softmax_loss_fn(mparams.label_smoothing),
          average_across_timesteps=mparams.average_across_timesteps)
638
639
640
641
642
643
644
645
646
      tf.losses.add_loss(loss)
      return loss

  def create_summaries(self, data, endpoints, charset, is_training):
    """Creates all summaries for the model.

    Args:
      data: InputEndpoints namedtuple.
      endpoints: OutputEndpoints namedtuple.
647
648
      charset: A dictionary with mapping between character codes and unicode
        characters. Use the one provided by a dataset.charset.
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
      is_training: If True will create summary prefixes for training job,
        otherwise - for evaluation.

    Returns:
      A list of evaluation ops
    """

    def sname(label):
      prefix = 'train' if is_training else 'eval'
      return '%s/%s' % (prefix, label)

    max_outputs = 4
    # TODO(gorban): uncomment, when tf.summary.text released.
    # charset_mapper = CharsetMapper(charset)
    # pr_text = charset_mapper.get_text(
    #     endpoints.predicted_chars[:max_outputs,:])
    # tf.summary.text(sname('text/pr'), pr_text)
    # gt_text = charset_mapper.get_text(data.labels[:max_outputs,:])
    # tf.summary.text(sname('text/gt'), gt_text)
    tf.summary.image(sname('image'), data.images, max_outputs=max_outputs)

    if is_training:
      tf.summary.image(
672
          sname('image/orig'), data.images_orig, max_outputs=max_outputs)
673
674
675
676
677
678
679
680
681
682
683
684
      for var in tf.trainable_variables():
        tf.summary.histogram(var.op.name, var)
      return None

    else:
      names_to_values = {}
      names_to_updates = {}

      def use_metric(name, value_update_tuple):
        names_to_values[name] = value_update_tuple[0]
        names_to_updates[name] = value_update_tuple[1]

685
686
687
688
689
690
691
      use_metric(
          'CharacterAccuracy',
          metrics.char_accuracy(
              endpoints.predicted_chars,
              data.labels,
              streaming=True,
              rej_char=self._params.null_code))
692
      # Sequence accuracy computed by cutting sequence at the first null char
693
694
695
696
697
698
699
      use_metric(
          'SequenceAccuracy',
          metrics.sequence_accuracy(
              endpoints.predicted_chars,
              data.labels,
              streaming=True,
              rej_char=self._params.null_code))
700

701
      for name, value in names_to_values.items():
702
703
        summary_name = 'eval/' + name
        tf.summary.scalar(summary_name, tf.Print(value, [value], summary_name))
704
      return list(names_to_updates.values())
705

706
707
  def create_init_fn_to_restore(self,
                                master_checkpoint,
708
                                inception_checkpoint=None):
709
710
711
    """Creates an init operations to restore weights from various checkpoints.

    Args:
712
713
      master_checkpoint: path to a checkpoint which contains all weights for the
        whole model.
714
715
716
717
718
719
720
721
722
723
      inception_checkpoint: path to a checkpoint which contains weights for the
        inception part only.

    Returns:
      a function to run initialization ops.
    """
    all_assign_ops = []
    all_feed_dict = {}

    def assign_from_checkpoint(variables, checkpoint):
724
725
      logging.info('Request to re-store %d weights from %s', len(variables),
                   checkpoint)
726
727
728
729
730
731
732
      if not variables:
        logging.error('Can\'t find any variables to restore.')
        sys.exit(1)
      assign_op, feed_dict = slim.assign_from_checkpoint(checkpoint, variables)
      all_assign_ops.append(assign_op)
      all_feed_dict.update(feed_dict)

733
734
735
736
737
738
    logging.info('variables_to_restore:\n%s',
                 utils.variables_to_restore().keys())
    logging.info('moving_average_variables:\n%s',
                 [v.op.name for v in tf.moving_average_variables()])
    logging.info('trainable_variables:\n%s',
                 [v.op.name for v in tf.trainable_variables()])
739
740
741
742
743
    if master_checkpoint:
      assign_from_checkpoint(utils.variables_to_restore(), master_checkpoint)

    if inception_checkpoint:
      variables = utils.variables_to_restore(
744
          'AttentionOcr_v1/conv_tower_fn/INCE', strip_scope=True)
745
746
747
748
749
750
751
      assign_from_checkpoint(variables, inception_checkpoint)

    def init_assign_fn(sess):
      logging.info('Restoring checkpoint(s)')
      sess.run(all_assign_ops, all_feed_dict)

    return init_assign_fn