model.py 21.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Functions to build the Attention OCR model.

Usage example:
  ocr_model = model.Model(num_char_classes, seq_length, num_of_views)

  data = ... # create namedtuple InputEndpoints
  endpoints = model.create_base(data.images, data.labels_one_hot)
  # endpoints.predicted_chars is a tensor with predicted character codes.
  total_loss = model.create_loss(data, endpoints)
"""
import sys
import collections
import logging
import tensorflow as tf
from tensorflow.contrib import slim
from tensorflow.contrib.slim.nets import inception

import metrics
import sequence_layers
import utils

OutputEndpoints = collections.namedtuple('OutputEndpoints', [
38
39
  'chars_logit', 'chars_log_prob', 'predicted_chars', 'predicted_scores',
  'predicted_text'
40
41
42
43
])

# TODO(gorban): replace with tf.HParams when it is released.
ModelParams = collections.namedtuple('ModelParams', [
44
  'num_char_classes', 'seq_length', 'num_views', 'null_code'
45
46
47
48
49
])

ConvTowerParams = collections.namedtuple('ConvTowerParams', ['final_endpoint'])

SequenceLogitsParams = collections.namedtuple('SequenceLogitsParams', [
50
51
  'use_attention', 'use_autoregression', 'num_lstm_units', 'weight_decay',
  'lstm_state_clip_value'
52
53
54
])

SequenceLossParams = collections.namedtuple('SequenceLossParams', [
55
  'label_smoothing', 'ignore_nulls', 'average_across_timesteps'
56
57
])

Alexander Gorban's avatar
Alexander Gorban committed
58
59
60
61
EncodeCoordinatesParams = collections.namedtuple('EncodeCoordinatesParams', [
  'enabled'
])

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

def _dict_to_array(id_to_char, default_character):
  num_char_classes = max(id_to_char.keys()) + 1
  array = [default_character] * num_char_classes
  for k, v in id_to_char.iteritems():
    array[k] = v
  return array


class CharsetMapper(object):
  """A simple class to map tensor ids into strings.

    It works only when the character set is 1:1 mapping between individual
    characters and individual ids.

    Make sure you call tf.tables_initializer().run() as part of the init op.
    """

  def __init__(self, charset, default_character='?'):
    """Creates a lookup table.

    Args:
      charset: a dictionary with id-to-character mapping.
    """
    mapping_strings = tf.constant(_dict_to_array(charset, default_character))
    self.table = tf.contrib.lookup.index_to_string_table_from_tensor(
88
      mapping=mapping_strings, default_value=default_character)
89
90
91
92
93
94
95
96

  def get_text(self, ids):
    """Returns a string corresponding to a sequence of character ids.

        Args:
          ids: a tensor with shape [batch_size, max_sequence_length]
        """
    return tf.reduce_join(
97
      self.table.lookup(tf.to_int64(ids)), reduction_indices=1)
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113


def get_softmax_loss_fn(label_smoothing):
  """Returns sparse or dense loss function depending on the label_smoothing.

    Args:
      label_smoothing: weight for label smoothing

    Returns:
      a function which takes labels and predictions as arguments and returns
      a softmax loss for the selected type of labels (sparse or dense).
    """
  if label_smoothing > 0:

    def loss_fn(labels, logits):
      return (tf.nn.softmax_cross_entropy_with_logits(
114
        logits=logits, labels=labels))
115
116
117
118
  else:

    def loss_fn(labels, logits):
      return tf.nn.sparse_softmax_cross_entropy_with_logits(
119
        logits=logits, labels=labels)
120
121
122
123
124
125
126
127

  return loss_fn


class Model(object):
  """Class to create the Attention OCR Model."""

  def __init__(self,
128
129
130
131
132
133
               num_char_classes,
               seq_length,
               num_views,
               null_code,
               mparams=None,
               charset=None):
134
135
136
137
138
139
140
141
142
143
    """Initialized model parameters.

    Args:
      num_char_classes: size of character set.
      seq_length: number of characters in a sequence.
      num_views: Number of views (conv towers) to use.
      null_code: A character code corresponding to a character which
        indicates end of a sequence.
      mparams: a dictionary with hyper parameters for methods,  keys -
        function names, values - corresponding namedtuples.
144
145
146
147
148
149
150
      charset: an optional dictionary with a mapping between character ids and
        utf8 strings. If specified the OutputEndpoints.predicted_text will
        utf8 encoded strings corresponding to the character ids returned by
        OutputEndpoints.predicted_chars (by default the predicted_text contains
        an empty vector). 
        NOTE: Make sure you call tf.tables_initializer().run() if the charset
        specified.
151
152
153
    """
    super(Model, self).__init__()
    self._params = ModelParams(
154
155
156
157
      num_char_classes=num_char_classes,
      seq_length=seq_length,
      num_views=num_views,
      null_code=null_code)
158
159
160
    self._mparams = self.default_mparams()
    if mparams:
      self._mparams.update(mparams)
161
    self._charset = charset
162
163
164

  def default_mparams(self):
    return {
165
      'conv_tower_fn':
166
        ConvTowerParams(final_endpoint='Mixed_5d'),
167
      'sequence_logit_fn':
168
        SequenceLogitsParams(
169
170
171
172
173
          use_attention=True,
          use_autoregression=True,
          num_lstm_units=256,
          weight_decay=0.00004,
          lstm_state_clip_value=10.0),
174
      'sequence_loss_fn':
175
        SequenceLossParams(
176
177
178
          label_smoothing=0.1,
          ignore_nulls=True,
          average_across_timesteps=False),
179
      'encode_coordinates_fn': EncodeCoordinatesParams(enabled=False)
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    }

  def set_mparam(self, function, **kwargs):
    self._mparams[function] = self._mparams[function]._replace(**kwargs)

  def conv_tower_fn(self, images, is_training=True, reuse=None):
    """Computes convolutional features using the InceptionV3 model.

    Args:
      images: A tensor of shape [batch_size, height, width, channels].
      is_training: whether is training or not.
      reuse: whether or not the network and its variables should be reused. To
        be able to reuse 'scope' must be given.

    Returns:
      A tensor of shape [batch_size, OH, OW, N], where OWxOH is resolution of
      output feature map and N is number of output features (depends on the
      network architecture).
    """
    mparams = self._mparams['conv_tower_fn']
    logging.debug('Using final_endpoint=%s', mparams.final_endpoint)
    with tf.variable_scope('conv_tower_fn/INCE'):
      if reuse:
        tf.get_variable_scope().reuse_variables()
204
205
206
207
208
      with slim.arg_scope(inception.inception_v3_arg_scope()):
        with slim.arg_scope([slim.batch_norm, slim.dropout],
                            is_training=is_training):
          net, _ = inception.inception_v3_base(
            images, final_endpoint=mparams.final_endpoint)
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
      return net

  def _create_lstm_inputs(self, net):
    """Splits an input tensor into a list of tensors (features).

    Args:
      net: A feature map of shape [batch_size, num_features, feature_size].

    Raises:
      AssertionError: if num_features is less than seq_length.

    Returns:
      A list with seq_length tensors of shape [batch_size, feature_size]
    """
    num_features = net.get_shape().dims[1].value
    if num_features < self._params.seq_length:
      raise AssertionError('Incorrect dimension #1 of input tensor'
                           ' %d should be bigger than %d (shape=%s)' %
                           (num_features, self._params.seq_length,
                            net.get_shape()))
    elif num_features > self._params.seq_length:
      logging.warning('Ignoring some features: use %d of %d (shape=%s)',
                      self._params.seq_length, num_features, net.get_shape())
      net = tf.slice(net, [0, 0, 0], [-1, self._params.seq_length, -1])

    return tf.unstack(net, axis=1)

  def sequence_logit_fn(self, net, labels_one_hot):
    mparams = self._mparams['sequence_logit_fn']
    # TODO(gorban): remove /alias suffixes from the scopes.
    with tf.variable_scope('sequence_logit_fn/SQLR'):
      layer_class = sequence_layers.get_layer_class(mparams.use_attention,
                                                    mparams.use_autoregression)
      layer = layer_class(net, labels_one_hot, self._params, mparams)
      return layer.create_logits()

  def max_pool_views(self, nets_list):
    """Max pool across all nets in spatial dimensions.

    Args:
      nets_list: A list of 4D tensors with identical size.

    Returns:
      A tensor with the same size as any input tensors.
    """
    batch_size, height, width, num_features = [
255
      d.value for d in nets_list[0].get_shape().dims
256
257
258
259
260
261
262
263
    ]
    xy_flat_shape = (batch_size, 1, height * width, num_features)
    nets_for_merge = []
    with tf.variable_scope('max_pool_views', values=nets_list):
      for net in nets_list:
        nets_for_merge.append(tf.reshape(net, xy_flat_shape))
      merged_net = tf.concat(nets_for_merge, 1)
      net = slim.max_pool2d(
264
        merged_net, kernel_size=[len(nets_list), 1], stride=1)
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
      net = tf.reshape(net, (batch_size, height, width, num_features))
    return net

  def pool_views_fn(self, nets):
    """Combines output of multiple convolutional towers into a single tensor.

    It stacks towers one on top another (in height dim) in a 4x1 grid.
    The order is arbitrary design choice and shouldn't matter much.

    Args:
      nets: list of tensors of shape=[batch_size, height, width, num_features].

    Returns:
      A tensor of shape [batch_size, seq_length, features_size].
    """
    with tf.variable_scope('pool_views_fn/STCK'):
      net = tf.concat(nets, 1)
      batch_size = net.get_shape().dims[0].value
      feature_size = net.get_shape().dims[3].value
      return tf.reshape(net, [batch_size, -1, feature_size])

  def char_predictions(self, chars_logit):
    """Returns confidence scores (softmax values) for predicted characters.

    Args:
      chars_logit: chars logits, a tensor with shape
        [batch_size x seq_length x num_char_classes]

    Returns:
      A tuple (ids, log_prob, scores), where:
        ids - predicted characters, a int32 tensor with shape
          [batch_size x seq_length];
        log_prob - a log probability of all characters, a float tensor with
          shape [batch_size, seq_length, num_char_classes];
        scores - corresponding confidence scores for characters, a float
        tensor
          with shape [batch_size x seq_length].
    """
    log_prob = utils.logits_to_log_prob(chars_logit)
304
    ids = tf.to_int32(tf.argmax(log_prob, axis=2), name='predicted_chars')
305
    mask = tf.cast(
306
      slim.one_hot_encoding(ids, self._params.num_char_classes), tf.bool)
307
308
309
310
311
    all_scores = tf.nn.softmax(chars_logit)
    selected_scores = tf.boolean_mask(all_scores, mask, name='char_scores')
    scores = tf.reshape(selected_scores, shape=(-1, self._params.seq_length))
    return ids, log_prob, scores

Alexander Gorban's avatar
Alexander Gorban committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
  def encode_coordinates_fn(self, net):
    """Adds one-hot encoding of coordinates to different views in the networks.

    For each "pixel" of a feature map it adds a onehot encoded x and y
    coordinates.

    Args:
      net: a tensor of shape=[batch_size, height, width, num_features]

    Returns:
      a tensor with the same height and width, but altered feature_size.
    """
    mparams = self._mparams['encode_coordinates_fn']
    if mparams.enabled:
      batch_size, h, w, _ = net.shape.as_list()
      x, y = tf.meshgrid(tf.range(w), tf.range(h))
      w_loc = slim.one_hot_encoding(x, num_classes=w)
      h_loc = slim.one_hot_encoding(y, num_classes=h)
      loc = tf.concat([h_loc, w_loc], 2)
      loc = tf.tile(tf.expand_dims(loc, 0), [batch_size, 1, 1, 1])
      return tf.concat([net, loc], 3)
    else:
      return net

336
  def create_base(self,
337
338
339
340
                  images,
                  labels_one_hot,
                  scope='AttentionOcr_v1',
                  reuse=None):
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    """Creates a base part of the Model (no gradients, losses or summaries).

    Args:
      images: A tensor of shape [batch_size, height, width, channels].
      labels_one_hot: Optional (can be None) one-hot encoding for ground truth
        labels. If provided the function will create a model for training.
      scope: Optional variable_scope.
      reuse: whether or not the network and its variables should be reused. To
        be able to reuse 'scope' must be given.

    Returns:
      A named tuple OutputEndpoints.
    """
    logging.debug('images: %s', images)
    is_training = labels_one_hot is not None
    with tf.variable_scope(scope, reuse=reuse):
      views = tf.split(
358
        value=images, num_or_size_splits=self._params.num_views, axis=2)
359
360
361
      logging.debug('Views=%d single view: %s', len(views), views[0])

      nets = [
362
363
        self.conv_tower_fn(v, is_training, reuse=(i != 0))
        for i, v in enumerate(views)
364
365
366
      ]
      logging.debug('Conv tower: %s', nets[0])

Alexander Gorban's avatar
Alexander Gorban committed
367
368
369
      nets = [self.encode_coordinates_fn(net) for net in nets]
      logging.debug('Conv tower w/ encoded coordinates: %s', nets[0])

370
371
372
373
374
375
376
      net = self.pool_views_fn(nets)
      logging.debug('Pooled views: %s', net)

      chars_logit = self.sequence_logit_fn(net, labels_one_hot)
      logging.debug('chars_logit: %s', chars_logit)

      predicted_chars, chars_log_prob, predicted_scores = (
377
378
379
380
381
382
        self.char_predictions(chars_logit))
      if self._charset:
        character_mapper = CharsetMapper(self._charset)
        predicted_text = character_mapper.get_text(predicted_chars)
      else:
        predicted_text = tf.constant([])
383
    return OutputEndpoints(
384
385
386
387
388
      chars_logit=chars_logit,
      chars_log_prob=chars_log_prob,
      predicted_chars=predicted_chars,
      predicted_scores=predicted_scores,
      predicted_text=predicted_text)
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

  def create_loss(self, data, endpoints):
    """Creates all losses required to train the model.

    Args:
      data: InputEndpoints namedtuple.
      endpoints: Model namedtuple.

    Returns:
      Total loss.
    """
    # NOTE: the return value of ModelLoss is not used directly for the
    # gradient computation because under the hood it calls slim.losses.AddLoss,
    # which registers the loss in an internal collection and later returns it
    # as part of GetTotalLoss. We need to use total loss because model may have
    # multiple losses including regularization losses.
    self.sequence_loss_fn(endpoints.chars_logit, data.labels)
    total_loss = slim.losses.get_total_loss()
    tf.summary.scalar('TotalLoss', total_loss)
    return total_loss

  def label_smoothing_regularization(self, chars_labels, weight=0.1):
    """Applies a label smoothing regularization.

    Uses the same method as in https://arxiv.org/abs/1512.00567.

    Args:
      chars_labels: ground truth ids of charactes,
        shape=[batch_size, seq_length];
      weight: label-smoothing regularization weight.

    Returns:
      A sensor with the same shape as the input.
    """
    one_hot_labels = tf.one_hot(
424
      chars_labels, depth=self._params.num_char_classes, axis=-1)
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
    pos_weight = 1.0 - weight
    neg_weight = weight / self._params.num_char_classes
    return one_hot_labels * pos_weight + neg_weight

  def sequence_loss_fn(self, chars_logits, chars_labels):
    """Loss function for char sequence.

    Depending on values of hyper parameters it applies label smoothing and can
    also ignore all null chars after the first one.

    Args:
      chars_logits: logits for predicted characters,
        shape=[batch_size, seq_length, num_char_classes];
      chars_labels: ground truth ids of characters,
        shape=[batch_size, seq_length];
      mparams: method hyper parameters.

    Returns:
      A Tensor with shape [batch_size] - the log-perplexity for each sequence.
    """
    mparams = self._mparams['sequence_loss_fn']
    with tf.variable_scope('sequence_loss_fn/SLF'):
      if mparams.label_smoothing > 0:
        smoothed_one_hot_labels = self.label_smoothing_regularization(
449
          chars_labels, mparams.label_smoothing)
450
451
452
453
454
455
456
457
458
459
460
461
        labels_list = tf.unstack(smoothed_one_hot_labels, axis=1)
      else:
        # NOTE: in case of sparse softmax we are not using one-hot
        # encoding.
        labels_list = tf.unstack(chars_labels, axis=1)

      batch_size, seq_length, _ = chars_logits.shape.as_list()
      if mparams.ignore_nulls:
        weights = tf.ones((batch_size, seq_length), dtype=tf.float32)
      else:
        # Suppose that reject character is the last in the charset.
        reject_char = tf.constant(
462
463
464
          self._params.num_char_classes - 1,
          shape=(batch_size, seq_length),
          dtype=tf.int64)
465
466
467
468
469
470
        known_char = tf.not_equal(chars_labels, reject_char)
        weights = tf.to_float(known_char)

      logits_list = tf.unstack(chars_logits, axis=1)
      weights_list = tf.unstack(weights, axis=1)
      loss = tf.contrib.legacy_seq2seq.sequence_loss(
471
472
473
474
475
        logits_list,
        labels_list,
        weights_list,
        softmax_loss_function=get_softmax_loss_fn(mparams.label_smoothing),
        average_across_timesteps=mparams.average_across_timesteps)
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
      tf.losses.add_loss(loss)
      return loss

  def create_summaries(self, data, endpoints, charset, is_training):
    """Creates all summaries for the model.

    Args:
      data: InputEndpoints namedtuple.
      endpoints: OutputEndpoints namedtuple.
      charset: A dictionary with mapping between character codes and
        unicode characters. Use the one provided by a dataset.charset.
      is_training: If True will create summary prefixes for training job,
        otherwise - for evaluation.

    Returns:
      A list of evaluation ops
    """

    def sname(label):
      prefix = 'train' if is_training else 'eval'
      return '%s/%s' % (prefix, label)

    max_outputs = 4
    # TODO(gorban): uncomment, when tf.summary.text released.
    # charset_mapper = CharsetMapper(charset)
    # pr_text = charset_mapper.get_text(
    #     endpoints.predicted_chars[:max_outputs,:])
    # tf.summary.text(sname('text/pr'), pr_text)
    # gt_text = charset_mapper.get_text(data.labels[:max_outputs,:])
    # tf.summary.text(sname('text/gt'), gt_text)
    tf.summary.image(sname('image'), data.images, max_outputs=max_outputs)

    if is_training:
      tf.summary.image(
510
        sname('image/orig'), data.images_orig, max_outputs=max_outputs)
511
512
513
514
515
516
517
518
519
520
521
522
523
524
      for var in tf.trainable_variables():
        tf.summary.histogram(var.op.name, var)
      return None

    else:
      names_to_values = {}
      names_to_updates = {}

      def use_metric(name, value_update_tuple):
        names_to_values[name] = value_update_tuple[0]
        names_to_updates[name] = value_update_tuple[1]

      use_metric('CharacterAccuracy',
                 metrics.char_accuracy(
525
526
527
528
                   endpoints.predicted_chars,
                   data.labels,
                   streaming=True,
                   rej_char=self._params.null_code))
529
530
531
      # Sequence accuracy computed by cutting sequence at the first null char
      use_metric('SequenceAccuracy',
                 metrics.sequence_accuracy(
532
533
534
535
                   endpoints.predicted_chars,
                   data.labels,
                   streaming=True,
                   rej_char=self._params.null_code))
536
537
538
539
540
541

      for name, value in names_to_values.iteritems():
        summary_name = 'eval/' + name
        tf.summary.scalar(summary_name, tf.Print(value, [value], summary_name))
      return names_to_updates.values()

542
  def create_init_fn_to_restore(self, master_checkpoint,
543
                                inception_checkpoint=None):
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
    """Creates an init operations to restore weights from various checkpoints.

    Args:
      master_checkpoint: path to a checkpoint which contains all weights for
        the whole model.
      inception_checkpoint: path to a checkpoint which contains weights for the
        inception part only.

    Returns:
      a function to run initialization ops.
    """
    all_assign_ops = []
    all_feed_dict = {}

    def assign_from_checkpoint(variables, checkpoint):
      logging.info('Request to re-store %d weights from %s',
                   len(variables), checkpoint)
      if not variables:
        logging.error('Can\'t find any variables to restore.')
        sys.exit(1)
      assign_op, feed_dict = slim.assign_from_checkpoint(checkpoint, variables)
      all_assign_ops.append(assign_op)
      all_feed_dict.update(feed_dict)

568
569
570
    logging.info('variables_to_restore:\n%s' % utils.variables_to_restore().keys())
    logging.info('moving_average_variables:\n%s' % [v.op.name for v in tf.moving_average_variables()])
    logging.info('trainable_variables:\n%s' % [v.op.name for v in tf.trainable_variables()])
571
572
573
574
575
    if master_checkpoint:
      assign_from_checkpoint(utils.variables_to_restore(), master_checkpoint)

    if inception_checkpoint:
      variables = utils.variables_to_restore(
576
        'AttentionOcr_v1/conv_tower_fn/INCE', strip_scope=True)
577
578
579
580
581
582
583
      assign_from_checkpoint(variables, inception_checkpoint)

    def init_assign_fn(sess):
      logging.info('Restoring checkpoint(s)')
      sess.run(all_assign_ops, all_feed_dict)

    return init_assign_fn