ncf_estimator_main.py 6.77 KB
Newer Older
Shining Sun's avatar
Shining Sun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""NCF framework to train and evaluate the NeuMF model.

The NeuMF model assembles both MF and MLP models under the NCF framework. Check
`neumf_model.py` for more details about the models.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import contextlib
import heapq
import json
import math
import multiprocessing
import os
import signal
import typing

# pylint: disable=g-bad-import-order
import numpy as np
from absl import app as absl_app
from absl import flags
38
from absl import logging
Shining Sun's avatar
Shining Sun committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import tensorflow as tf
# pylint: enable=g-bad-import-order

from official.datasets import movielens
from official.recommendation import constants as rconst
from official.recommendation import data_pipeline
from official.recommendation import data_preprocessing
from official.recommendation import ncf_common
from official.recommendation import neumf_model
from official.utils.flags import core as flags_core
from official.utils.logs import hooks_helper
from official.utils.logs import logger
from official.utils.logs import mlperf_helper
from official.utils.misc import distribution_utils
from official.utils.misc import model_helpers


FLAGS = flags.FLAGS


def construct_estimator(model_dir, params):
  """Construct either an Estimator or TPUEstimator for NCF.

  Args:
    model_dir: The model directory for the estimator
    params: The params dict for the estimator

  Returns:
    An Estimator or TPUEstimator.
  """
  distribution = ncf_common.get_distribution_strategy(params)
  run_config = tf.estimator.RunConfig(train_distribute=distribution,
                                      eval_distribute=distribution)

  model_fn = neumf_model.neumf_model_fn
  if params["use_xla_for_gpu"]:
Shining Sun's avatar
Shining Sun committed
75
    # TODO(seemuch): remove the contrib imput
76
77
    from tensorflow.contrib.compiler import xla
    logging.info("Using XLA for GPU for training and evaluation.")
Shining Sun's avatar
Shining Sun committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    model_fn = xla.estimator_model_fn(model_fn)
  estimator = tf.estimator.Estimator(model_fn=model_fn, model_dir=model_dir,
                                     config=run_config, params=params)
  return estimator


def log_and_get_hooks(eval_batch_size):
  """Convenience function for hook and logger creation."""
  # Create hooks that log information about the training and metric values
  train_hooks = hooks_helper.get_train_hooks(
      FLAGS.hooks,
      model_dir=FLAGS.model_dir,
      batch_size=FLAGS.batch_size,  # for ExamplesPerSecondHook
      tensors_to_log={"cross_entropy": "cross_entropy"}
  )
  run_params = {
      "batch_size": FLAGS.batch_size,
      "eval_batch_size": eval_batch_size,
      "number_factors": FLAGS.num_factors,
      "hr_threshold": FLAGS.hr_threshold,
      "train_epochs": FLAGS.train_epochs,
  }
  benchmark_logger = logger.get_benchmark_logger()
  benchmark_logger.log_run_info(
      model_name="recommendation",
      dataset_name=FLAGS.dataset,
      run_params=run_params,
      test_id=FLAGS.benchmark_test_id)

  return benchmark_logger, train_hooks


def main(_):
  with logger.benchmark_context(FLAGS), \
       mlperf_helper.LOGGER(FLAGS.output_ml_perf_compliance_logging):
    mlperf_helper.set_ncf_root(os.path.split(os.path.abspath(__file__))[0])
    run_ncf(FLAGS)


def run_ncf(_):
  """Run NCF training and eval loop."""
  params = ncf_common.parse_flags(FLAGS)

  num_users, num_items, num_train_steps, num_eval_steps, producer = (
      ncf_common.get_inputs(params))

  params["num_users"], params["num_items"] = num_users, num_items
  producer.start()
  model_helpers.apply_clean(flags.FLAGS)

  estimator = construct_estimator(model_dir=FLAGS.model_dir, params=params)

  benchmark_logger, train_hooks = log_and_get_hooks(params["eval_batch_size"])
  total_training_cycle = FLAGS.train_epochs // FLAGS.epochs_between_evals

  target_reached = False
  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.TRAIN_LOOP)
  for cycle_index in range(total_training_cycle):
    assert FLAGS.epochs_between_evals == 1 or not mlperf_helper.LOGGER.enabled
137
    logging.info("Starting a training cycle: {}/{}".format(
Shining Sun's avatar
Shining Sun committed
138
139
140
141
142
143
144
145
146
        cycle_index + 1, total_training_cycle))

    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.TRAIN_EPOCH,
                            value=cycle_index)

    train_input_fn = producer.make_input_fn(is_training=True)
    estimator.train(input_fn=train_input_fn, hooks=train_hooks,
                    steps=num_train_steps)

147
    logging.info("Beginning evaluation.")
Shining Sun's avatar
Shining Sun committed
148
149
150
151
152
    eval_input_fn = producer.make_input_fn(is_training=False)

    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_START,
                            value=cycle_index)
    eval_results = estimator.evaluate(eval_input_fn, steps=num_eval_steps)
153
    logging.info("Evaluation complete.")
Shining Sun's avatar
Shining Sun committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

    hr = float(eval_results[rconst.HR_KEY])
    ndcg = float(eval_results[rconst.NDCG_KEY])
    loss = float(eval_results["loss"])

    mlperf_helper.ncf_print(
        key=mlperf_helper.TAGS.EVAL_TARGET,
        value={"epoch": cycle_index, "value": FLAGS.hr_threshold})
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_ACCURACY,
                            value={"epoch": cycle_index, "value": hr})
    mlperf_helper.ncf_print(
        key=mlperf_helper.TAGS.EVAL_HP_NUM_NEG,
        value={"epoch": cycle_index, "value": rconst.NUM_EVAL_NEGATIVES})

    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_STOP, value=cycle_index)

    # Benchmark the evaluation results
    benchmark_logger.log_evaluation_result(eval_results)
    # Log the HR and NDCG results.
173
    logging.info(
Shining Sun's avatar
Shining Sun committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        "Iteration {}: HR = {:.4f}, NDCG = {:.4f}, Loss = {:.4f}".format(
            cycle_index + 1, hr, ndcg, loss))

    # If some evaluation threshold is met
    if model_helpers.past_stop_threshold(FLAGS.hr_threshold, hr):
      target_reached = True
      break

  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_STOP,
                          value={"success": target_reached})
  producer.stop_loop()
  producer.join()

  # Clear the session explicitly to avoid session delete error
  tf.keras.backend.clear_session()
  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_FINAL)


if __name__ == "__main__":
193
  logging.set_verbosity(logging.INFO)
Shining Sun's avatar
Shining Sun committed
194
195
  ncf_common.define_ncf_flags()
  absl_app.run(main)