xlnet_config.py 5.97 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utility functions used in XLNet model."""

from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

import json
import os

import tensorflow as tf


def create_run_config(is_training, is_finetune, flags):
  """Helper function for creating RunConfig."""
  kwargs = dict(
      is_training=is_training,
      use_tpu=flags.use_tpu,
      dropout=flags.dropout,
      dropout_att=flags.dropout_att,
      init_method=flags.init_method,
      init_range=flags.init_range,
      init_std=flags.init_std,
      clamp_len=flags.clamp_len)

  if not is_finetune:
    kwargs.update(dict(
        mem_len=flags.mem_len,
        reuse_len=flags.reuse_len,
        bi_data=flags.bi_data,
        clamp_len=flags.clamp_len,
        same_length=flags.same_length))

  return RunConfig(**kwargs)


Hongkun Yu's avatar
Hongkun Yu committed
51
# TODO(hongkuny): refactor XLNetConfig and RunConfig.
Hongkun Yu's avatar
Hongkun Yu committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
class XLNetConfig(object):
  """Configs for XLNet model.

  XLNetConfig contains hyperparameters that are specific to a model checkpoint;
  i.e., these hyperparameters should be the same between
  pretraining and finetuning.

  The following hyperparameters are defined:
    n_layer: int, the number of layers.
    d_model: int, the hidden size.
    n_head: int, the number of attention heads.
    d_head: int, the dimension size of each attention head.
    d_inner: int, the hidden size in feed-forward layers.
    ff_activation: str, "relu" or "gelu".
    untie_r: bool, whether to untie the biases in attention.
    n_token: int, the vocab size.
  """

  def __init__(self, FLAGS=None, json_path=None, args_dict=None):
    """Constructing an XLNetConfig.

    One of FLAGS or json_path should be provided.

    Args:
      FLAGS: An FLAGS instance.
      json_path: A path to a json config file.
      args_dict: A dict for args.
    """

    assert FLAGS is not None or json_path is not None or args_dict is not None

    self.keys = ['n_layer', 'd_model', 'n_head', 'd_head', 'd_inner',
                 'ff_activation', 'untie_r', 'n_token']

    if FLAGS is not None:
      self.init_from_flags(FLAGS)

    if json_path is not None:
      self.init_from_json(json_path)

    if args_dict is not None:
      self.init_from_dict(args_dict)

  def init_from_dict(self, args_dict):
    """Constructs a `BertConfig` from a Python dictionary of parameters."""
    for key in self.keys:
      setattr(self, key, args_dict[key])

  def init_from_flags(self, flags):
    for key in self.keys:
      setattr(self, key, getattr(flags, key))

  def init_from_json(self, json_path):
105
    with tf.io.gfile.GFile(json_path) as f:
Hongkun Yu's avatar
Hongkun Yu committed
106
107
108
109
110
111
112
113
114
115
      json_data = json.load(f)
      self.init_from_dict(json_data)

  def to_json(self, json_path):
    """Save XLNetConfig to a json file."""
    json_data = {}
    for key in self.keys:
      json_data[key] = getattr(self, key)

    json_dir = os.path.dirname(json_path)
116
117
118
    if not tf.io.gfile.exists(json_dir):
      tf.io.gfile.makedirs(json_dir)
    with tf.io.gfile.GFile(json_path, 'w') as f:
Hongkun Yu's avatar
Hongkun Yu committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
      json.dump(json_data, f, indent=4, sort_keys=True)


class RunConfig(object):
  """Class of RunConfig.

  RunConfig contains hyperparameters that could be different
  between pretraining and finetuning.
  These hyperparameters can also be changed from run to run.
  We store them separately from XLNetConfig for flexibility.
  """

  def __init__(self,
               is_training,
               use_tpu,
               dropout,
               dropout_att,
               init_method='normal',
               init_range=0.1,
               init_std=0.02,
               mem_len=None,
               reuse_len=None,
               bi_data=False,
               clamp_len=-1,
Hongkun Yu's avatar
Hongkun Yu committed
143
144
               same_length=False,
               use_cls_mask=True):
Hongkun Yu's avatar
Hongkun Yu committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    """Initializes RunConfig.

    Args:
      is_training: bool, whether in training mode.
      use_tpu: bool, whether TPUs are used.
      dropout: float, dropout rate.
      dropout_att: float, dropout rate on attention probabilities.
      init_method: str, the initialization scheme, either "normal" or "uniform".
      init_range: float, initialize the parameters with a uniform distribution
        in [-init_range, init_range]. Only effective when init="uniform".
      init_std: float, initialize the parameters with a normal distribution
        with mean 0 and stddev init_std. Only effective when init="normal".
      mem_len: int, the number of tokens to cache.
      reuse_len: int, the number of tokens in the currect batch to be cached
        and reused in the future.
      bi_data: bool, whether to use bidirectional input pipeline.
        Usually set to True during pretraining and False during finetuning.
      clamp_len: int, clamp all relative distances larger than clamp_len.
        -1 means no clamping.
      same_length: bool, whether to use the same attention length
                   for each token.
Hongkun Yu's avatar
Hongkun Yu committed
166
      use_cls_mask: bool, whether to introduce cls mask.
Hongkun Yu's avatar
Hongkun Yu committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    """

    self.init_method = init_method
    self.init_range = init_range
    self.init_std = init_std
    self.is_training = is_training
    self.dropout = dropout
    self.dropout_att = dropout_att
    self.use_tpu = use_tpu
    self.mem_len = mem_len
    self.reuse_len = reuse_len
    self.bi_data = bi_data
    self.clamp_len = clamp_len
    self.same_length = same_length
Hongkun Yu's avatar
Hongkun Yu committed
181
    self.use_cls_mask = use_cls_mask