data_utils.py 30.5 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities used for data preparation."""

from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

Jing Li's avatar
Jing Li committed
22
import collections
Hongkun Yu's avatar
Hongkun Yu committed
23
24
25
26
import json
import os
from absl import logging

Jing Li's avatar
Jing Li committed
27
import numpy as np
Hongkun Yu's avatar
Hongkun Yu committed
28
29
import tensorflow as tf

Jing Li's avatar
Jing Li committed
30

Hongkun Yu's avatar
Hongkun Yu committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
special_symbols = {
    "<unk>": 0,
    "<s>": 1,
    "</s>": 2,
    "<cls>": 3,
    "<sep>": 4,
    "<pad>": 5,
    "<mask>": 6,
    "<eod>": 7,
    "<eop>": 8,
}

VOCAB_SIZE = 32000
UNK_ID = special_symbols["<unk>"]
CLS_ID = special_symbols["<cls>"]
SEP_ID = special_symbols["<sep>"]
MASK_ID = special_symbols["<mask>"]
EOD_ID = special_symbols["<eod>"]
Hongkun Yu's avatar
Hongkun Yu committed
49
50
51
52
SEG_ID_P = 0
SEG_ID_Q = 1
SEG_ID_CLS = 2
SEG_ID_PAD = 3
Hongkun Yu's avatar
Hongkun Yu committed
53
54


Jing Li's avatar
Jing Li committed
55
56
57
58
59
OnlineMaskingConfig = collections.namedtuple("OnlineMaskingConfig", [
    "sample_strategy", "max_num_tokens", "min_num_tokens", "max_num_words",
    "min_num_words"])


Hongkun Yu's avatar
Hongkun Yu committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
def file_based_input_fn_builder(input_file, name_to_features, batch_size,
                                is_training):
  """Creates an `input_fn` closure."""

  logging.info("Input tfrecord file %s", input_file)

  def _decode_record(record, name_to_features):
    """Decodes a record to a TensorFlow example."""
    example = tf.io.parse_single_example(record, name_to_features)

    # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
    # So cast all int64 to int32.
    for name in list(example.keys()):
      t = example[name]
      if t.dtype == tf.int64:
        t = tf.cast(t, tf.int32)
      example[name] = t

    return example

  def input_fn():
    """Returns dataset for training/evaluation."""
    num_threads = 8
    if isinstance(input_file, str):
      d = tf.data.TFRecordDataset(input_file)
      # For training, we want a lot of parallel reading and shuffling.
      # For eval, we want no shuffling and parallel reading doesn't matter.
      if is_training:
        d = d.shuffle(2048)
        d = d.repeat()
    else:
      cycle_length = min(num_threads, len(input_file))
      d = tf.data.Dataset.from_tensor_slices(input_file)
      # file level shuffle
      d = d.shuffle(len(input_file)).repeat()

      d = d.apply(
          tf.data.experimental.parallel_interleave(
              tf.data.TFRecordDataset,
              sloppy=is_training,
              cycle_length=cycle_length))

      if is_training:
        # sample level shuffle
        d = d.shuffle(buffer_size=2048)

    # TODO(b/138223458): Hard-code drop_remainder=True to get around the bug
    # that under TPU strategy, setting drop_remainder=False in
    # tf.data.Dataset.batch() while data_size can be divided by global
    # batch_size will trigger dynamic_dimension related TPU compilation error.
    d = d.apply(
        tf.data.experimental.map_and_batch(
            lambda record: _decode_record(record, name_to_features),
            batch_size=batch_size,
            num_parallel_batches=num_threads,
            drop_remainder=True))

    # When `input_file` is a path to a single file or a list
    # containing a single path, disable auto sharding so that
    # same input file is sent to all workers.
    if isinstance(input_file, str) or len(input_file) == 1:
      options = tf.data.Options()
122
123
      options.experimental_distribute.auto_shard_policy = (
          tf.data.experimental.AutoShardPolicy.OFF)
Hongkun Yu's avatar
Hongkun Yu committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
      d = d.with_options(options)

    d = d.prefetch(tf.data.experimental.AUTOTUNE)
    return d

  return input_fn


def create_classification_dataset(file_path, seq_length, batch_size,
                                  is_training):
  """Creates input dataset from (tf)records files for pretraining."""
  name_to_features = {
      "input_ids": tf.io.FixedLenFeature([seq_length], tf.int64),
      "input_mask": tf.io.FixedLenFeature([seq_length], tf.float32),
      "segment_ids": tf.io.FixedLenFeature([seq_length], tf.int64),
      "label_ids": tf.io.FixedLenFeature([], tf.int64),
      "is_real_example": tf.io.FixedLenFeature([], tf.int64),
  }

  input_fn = file_based_input_fn_builder(file_path, name_to_features,
                                         batch_size, is_training)
  dataset = input_fn()
  return dataset


def create_squad_dataset(file_path, seq_length, batch_size, is_training):
  """Creates input dataset from (tf)records files for pretraining."""
  name_to_features = {
      "unique_ids": tf.io.FixedLenFeature([], tf.int64),
      "input_ids": tf.io.FixedLenFeature([seq_length], tf.int64),
      "input_mask": tf.io.FixedLenFeature([seq_length], tf.float32),
      "segment_ids": tf.io.FixedLenFeature([seq_length], tf.int64),
      "cls_index": tf.io.FixedLenFeature([], tf.int64),
      "p_mask": tf.io.FixedLenFeature([seq_length], tf.float32)
  }

  if is_training:
    name_to_features["start_positions"] = tf.io.FixedLenFeature([], tf.int64)
    name_to_features["end_positions"] = tf.io.FixedLenFeature([], tf.int64)
    name_to_features["is_impossible"] = tf.io.FixedLenFeature([], tf.float32)

  input_fn = file_based_input_fn_builder(file_path, name_to_features,
                                         batch_size, is_training)
  dataset = input_fn()
  return dataset


Hongkun Yu's avatar
Hongkun Yu committed
171
def get_input_iterator(input_fn, strategy):
Hongkun Yu's avatar
Hongkun Yu committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
  """Returns distributed dataset iterator."""

  # When training with TPU pods, datasets needs to be cloned across
  # workers. Since Dataset instance cannot be cloned in eager mode, we instead
  # pass callable that returns a dataset.
  input_data = input_fn()
  if callable(input_data):
    iterator = iter(
        strategy.experimental_distribute_datasets_from_function(input_data))
  else:
    iterator = iter(strategy.experimental_distribute_dataset(input_data))
  return iterator


def get_classification_input_data(batch_size, seq_len, strategy, is_training,
                                  file_path):
  """Returns input dataset from input file string."""

  # When using TPU pods, we need to clone dataset across
  # workers and need to pass in function that returns the dataset rather
  # than passing dataset instance itself.
  use_dataset_fn = isinstance(strategy, tf.distribute.experimental.TPUStrategy)
  if use_dataset_fn:
    if batch_size % strategy.num_replicas_in_sync != 0:
      raise ValueError(
          "Batch size must be divisible by number of replicas : {}".format(
              strategy.num_replicas_in_sync))

    # As auto rebatching is not supported in
    # `experimental_distribute_datasets_from_function()` API, which is
    # required when cloning dataset to multiple workers in eager mode,
    # we use per-replica batch size.
    batch_size = int(batch_size / strategy.num_replicas_in_sync)

  def _dataset_fn(ctx=None):
    del ctx

    train_dataset = create_classification_dataset(
        file_path=file_path,
        seq_length=seq_len,
        batch_size=batch_size,
        is_training=is_training)
    return train_dataset

  return _dataset_fn if use_dataset_fn else _dataset_fn()


def get_squad_input_data(batch_size, seq_len, q_len, strategy, is_training,
                         file_path):
  """Returns input dataset from input file string."""

  # When using TPU pods, we need to clone dataset across
  # workers and need to pass in function that returns the dataset rather
  # than passing dataset instance itself.
  use_dataset_fn = isinstance(strategy, tf.distribute.experimental.TPUStrategy)
  if use_dataset_fn:
    if batch_size % strategy.num_replicas_in_sync != 0:
      raise ValueError(
          "Batch size must be divisible by number of replicas : {}".format(
              strategy.num_replicas_in_sync))

    # As auto rebatching is not supported in
    # `experimental_distribute_datasets_from_function()` API, which is
    # required when cloning dataset to multiple workers in eager mode,
    # we use per-replica batch size.
    batch_size = int(batch_size / strategy.num_replicas_in_sync)

  if is_training:
    input_glob = os.path.join(
        file_path,
        "spiece.model.*.slen-{}.qlen-{}.train.tf_record".format(seq_len, q_len))

    global_input_paths = tf.io.gfile.glob(input_glob)
  else:
    global_input_paths = file_path

  def _dataset_fn(ctx=None):
    del ctx

    train_dataset = create_squad_dataset(
        file_path=global_input_paths,
        seq_length=seq_len,
        batch_size=batch_size,
        is_training=is_training)
    return train_dataset

  return _dataset_fn if use_dataset_fn else _dataset_fn()


Jing Li's avatar
Jing Li committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
def _idx_pair_to_mask(beg_indices, end_indices, inputs, tgt_len, num_predict):
  """Turn beg and end indices into actual mask."""
  non_func_mask = tf.logical_and(
      tf.not_equal(inputs, SEP_ID),
      tf.not_equal(inputs, CLS_ID))
  all_indices = tf.where(
      non_func_mask,
      tf.range(tgt_len, dtype=tf.int64),
      tf.constant(-1, shape=[tgt_len], dtype=tf.int64))
  candidate_matrix = tf.cast(
      tf.logical_and(
          all_indices[None, :] >= beg_indices[:, None],
          all_indices[None, :] < end_indices[:, None]),
      tf.float32)
  cumsum_matrix = tf.reshape(
      tf.cumsum(tf.reshape(candidate_matrix, [-1])),
      [-1, tgt_len])
  masked_matrix = tf.cast(cumsum_matrix <= num_predict, tf.float32)
  target_mask = tf.reduce_sum(candidate_matrix * masked_matrix, axis=0)
  is_masked = tf.cast(target_mask, tf.bool)

  return is_masked, target_mask


def _word_span_mask(inputs, tgt_len, num_predict, min_num_words,
                    max_num_words, boundary):
  """Sample whole word spans as prediction targets."""
  # Note: 1.2 is the token-to-word ratio
  mask_alpha = tgt_len / num_predict / 1.2
  round_to_int = lambda x: tf.cast(tf.round(x), tf.int64)

  # Sample span lengths from a zipf distribution
  span_len_seq = np.arange(min_num_words, max_num_words + 1)
  probs = np.array([1.0 /  (i + 1) for i in span_len_seq])
  probs /= np.sum(probs)
  logits = tf.constant(np.log(probs), dtype=tf.float32)

  # Sample `num_predict` words here: note that this is over sampling
  span_lens = tf.random.categorical(
      logits=logits[None],
      num_samples=num_predict,
      dtype=tf.int64,
  )[0] + min_num_words

  # Sample the ratio [0.0, 1.0) of left context lengths
  span_lens_float = tf.cast(span_lens, tf.float32)
  left_ratio = tf.random.uniform(shape=[num_predict], minval=0.0, maxval=1.0)
  left_ctx_len = left_ratio * span_lens_float * (mask_alpha - 1)

  left_ctx_len = round_to_int(left_ctx_len)
  right_offset = round_to_int(span_lens_float * mask_alpha) - left_ctx_len

  beg_indices = (tf.cumsum(left_ctx_len) +
                 tf.cumsum(right_offset, exclusive=True))
  end_indices = beg_indices + span_lens

  # Remove out of range indices
  max_boundary_index = tf.cast(tf.shape(boundary)[0] - 1, tf.int64)
  valid_idx_mask = end_indices < max_boundary_index
  beg_indices = tf.boolean_mask(beg_indices, valid_idx_mask)
  end_indices = tf.boolean_mask(end_indices, valid_idx_mask)

  beg_indices = tf.gather(boundary, beg_indices)
  end_indices = tf.gather(boundary, end_indices)

  # Shuffle valid indices
  num_valid = tf.cast(tf.shape(beg_indices)[0], tf.int64)
  order = tf.random.shuffle(tf.range(num_valid, dtype=tf.int64))
  beg_indices = tf.gather(beg_indices, order)
  end_indices = tf.gather(end_indices, order)

  return _idx_pair_to_mask(beg_indices, end_indices, inputs, tgt_len,
                           num_predict)


def _token_span_mask(inputs, tgt_len, num_predict, min_num_tokens,
                     max_num_tokens):
  """Sample token spans as prediction targets."""
  mask_alpha = tgt_len / num_predict
  round_to_int = lambda x: tf.cast(tf.round(x), tf.int64)

  # Sample span lengths from a zipf distribution
  span_len_seq = np.arange(min_num_tokens, max_num_tokens + 1)
  probs = np.array([1.0 /  (i + 1) for i in span_len_seq])

  probs /= np.sum(probs)
  logits = tf.constant(np.log(probs), dtype=tf.float32)
  span_lens = tf.random.categorical(
      logits=logits[None],
      num_samples=num_predict,
      dtype=tf.int64,
  )[0] + min_num_tokens

  # Sample the ratio [0.0, 1.0) of left context lengths
  span_lens_float = tf.cast(span_lens, tf.float32)
  left_ratio = tf.random.uniform(shape=[num_predict], minval=0.0, maxval=1.0)
  left_ctx_len = left_ratio * span_lens_float * (mask_alpha - 1)
  left_ctx_len = round_to_int(left_ctx_len)

  # Compute the offset from left start to the right end
  right_offset = round_to_int(span_lens_float * mask_alpha) - left_ctx_len

  # Get the actual begin and end indices
  beg_indices = (tf.cumsum(left_ctx_len) +
                 tf.cumsum(right_offset, exclusive=True))
  end_indices = beg_indices + span_lens

  # Remove out of range indices
  valid_idx_mask = end_indices < tgt_len
  beg_indices = tf.boolean_mask(beg_indices, valid_idx_mask)
  end_indices = tf.boolean_mask(end_indices, valid_idx_mask)

  # Shuffle valid indices
  num_valid = tf.cast(tf.shape(beg_indices)[0], tf.int64)
  order = tf.random.shuffle(tf.range(num_valid, dtype=tf.int64))
  beg_indices = tf.gather(beg_indices, order)
  end_indices = tf.gather(end_indices, order)

  return _idx_pair_to_mask(beg_indices, end_indices, inputs, tgt_len,
                           num_predict)


def _whole_word_mask(inputs, tgt_len, num_predict, boundary):
  """Sample whole words as prediction targets."""
  pair_indices = tf.concat([boundary[:-1, None], boundary[1:, None]], axis=1)
  cand_pair_indices = tf.random.shuffle(pair_indices)[:num_predict]
  beg_indices = cand_pair_indices[:, 0]
  end_indices = cand_pair_indices[:, 1]

  return _idx_pair_to_mask(beg_indices, end_indices, inputs, tgt_len,
                           num_predict)


def _single_token_mask(inputs, tgt_len, num_predict):
  """Sample individual tokens as prediction targets."""
  all_indices = tf.range(tgt_len, dtype=tf.int64)
  non_func_mask = tf.logical_and(
      tf.not_equal(inputs, SEP_ID),
      tf.not_equal(inputs, CLS_ID))
  non_func_indices = tf.boolean_mask(all_indices, non_func_mask)

  masked_pos = tf.random.shuffle(non_func_indices)
  masked_pos = tf.contrib.framework.sort(masked_pos[:num_predict])
  target_mask = tf.sparse_to_dense(
      sparse_indices=masked_pos,
      output_shape=[tgt_len],
      sparse_values=1.0,
      default_value=0.0)

  is_masked = tf.cast(target_mask, tf.bool)

  return is_masked, target_mask


def _online_sample_masks(inputs, tgt_len, num_predict, online_masking_config,
                         boundary=None):
  """Sample target positions to predict."""
  logging.info("Online sample with strategy: `%s`.",
               online_masking_config.sample_strategy)
  if online_masking_config.sample_strategy == "single_token":
    return _single_token_mask(inputs, tgt_len, num_predict)
  elif online_masking_config.sample_strategy == "whole_word":
    assert boundary is not None, "whole word sampling requires `boundary`"
    return _whole_word_mask(inputs, tgt_len, num_predict, boundary)
  elif online_masking_config.sample_strategy == "token_span":
    return _token_span_mask(inputs, tgt_len, num_predict,
                            online_masking_config.min_num_tokens,
                            online_masking_config.max_num_tokens)
  elif online_masking_config.sample_strategy == "word_span":
    assert boundary is not None, "word span sampling requires `boundary`"
    return _word_span_mask(inputs, tgt_len, num_predict,
                           online_masking_config.min_num_words,
                           online_masking_config.max_num_words,
                           boundary)
  else:
    raise NotImplementedError


Hongkun Yu's avatar
Hongkun Yu committed
439
440
441
442
443
def create_pretrain_dataset(file_names,
                            bsz_per_core,
                            seq_len,
                            reuse_len,
                            perm_size,
Jing Li's avatar
Jing Li committed
444
445
                            leak_ratio,
                            online_masking_config,
Hongkun Yu's avatar
Hongkun Yu committed
446
447
448
449
450
451
452
453
454
455
456
457
458
                            num_predict=None,
                            input_pipeline_context=None):
  """Creates pretrain dataset."""

  def parser(record):
    """Function used to parse tfrecord."""

    record_spec = {
        "input": tf.io.FixedLenFeature([seq_len], tf.int64),
        "seg_id": tf.io.FixedLenFeature([seq_len], tf.int64),
        "label": tf.io.FixedLenFeature([1], tf.int64),
    }

Jing Li's avatar
Jing Li committed
459
460
461
462
463
    if online_masking_config.sample_strategy in ["whole_word", "word_span"]:
      logging.info("Add `boundary` spec for %s",
                   online_masking_config.sample_strategy)
      record_spec["boundary"] = tf.io.VarLenFeature(tf.int64)

Hongkun Yu's avatar
Hongkun Yu committed
464
465
466
467
468
    # retrieve serialized example
    example = tf.io.parse_single_example(
        serialized=record, features=record_spec)

    inputs = example.pop("input")
Jing Li's avatar
Jing Li committed
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
    if online_masking_config.sample_strategy in ["whole_word", "word_span"]:
      boundary = tf.sparse.to_dense(example.pop("boundary"))
    else:
      boundary = None
    is_masked, _ = _online_sample_masks(
        inputs, seq_len, num_predict, online_masking_config, boundary=boundary)

    if reuse_len > 0:
      ##### Use memory
      # permutate the reuse and non-reuse parts separately
      non_reuse_len = seq_len - reuse_len
      assert reuse_len % perm_size == 0 and non_reuse_len % perm_size == 0

      # Creates permutation mask and target mask for the first reuse_len tokens.
      # The tokens in this part are reused from the last sequence.
      perm_mask_0, target_mask_0, input_k_0, input_q_0 = _local_perm(
          inputs[:reuse_len], is_masked[:reuse_len], perm_size, reuse_len,
          leak_ratio)

      # Creates permutation mask and target mask for the rest of tokens in
      # current example, which are concatentation of two new segments.
      perm_mask_1, target_mask_1, input_k_1, input_q_1 = _local_perm(
          inputs[reuse_len:], is_masked[reuse_len:], perm_size, non_reuse_len,
          leak_ratio)

      perm_mask_0 = tf.concat(
          [perm_mask_0, tf.ones([reuse_len, non_reuse_len])], axis=1)
      perm_mask_1 = tf.concat(
          [tf.zeros([non_reuse_len, reuse_len]), perm_mask_1], axis=1)
      perm_mask = tf.concat([perm_mask_0, perm_mask_1], axis=0)
      target_mask = tf.concat([target_mask_0, target_mask_1], axis=0)
      input_k = tf.concat([input_k_0, input_k_1], axis=0)
      input_q = tf.concat([input_q_0, input_q_1], axis=0)
    else:
      ##### Do not use memory
      assert seq_len % perm_size == 0
      # permutate the entire sequence together
      perm_mask, target_mask, input_k, input_q = _local_perm(
          inputs, is_masked, perm_size, seq_len, leak_ratio)

    # reshape back to fixed shape
    example["perm_mask"] = tf.reshape(perm_mask, [seq_len, seq_len])
    example["input_k"] = tf.reshape(input_k, [seq_len])
    example["input_q"] = tf.reshape(input_q, [seq_len])

    # Directly use raw inputs as the target
    target = inputs
Hongkun Yu's avatar
Hongkun Yu committed
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

    if num_predict is not None:
      indices = tf.range(seq_len, dtype=tf.int64)
      bool_target_mask = tf.cast(target_mask, tf.bool)
      indices = tf.boolean_mask(indices, bool_target_mask)

      ##### extra padding due to CLS/SEP introduced after prepro
      actual_num_predict = tf.shape(indices)[0]
      pad_len = num_predict - actual_num_predict

      ##### target_mapping
      target_mapping = tf.one_hot(indices, seq_len, dtype=tf.float32)
      paddings = tf.zeros([pad_len, seq_len], dtype=target_mapping.dtype)
      target_mapping = tf.concat([target_mapping, paddings], axis=0)
      example["target_mapping"] = tf.reshape(target_mapping,
                                             [num_predict, seq_len])

      ##### target
      target = tf.boolean_mask(target, bool_target_mask)
      paddings = tf.zeros([pad_len], dtype=target.dtype)
      target = tf.concat([target, paddings], axis=0)
      example["target"] = tf.reshape(target, [num_predict])

      ##### target mask
Jing Li's avatar
Jing Li committed
540
541
542
543
      target_mask = tf.concat(
          [tf.ones([actual_num_predict], dtype=tf.float32),
           tf.zeros([pad_len], dtype=tf.float32)],
          axis=0)
Hongkun Yu's avatar
Hongkun Yu committed
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
      example["target_mask"] = tf.reshape(target_mask, [num_predict])
    else:
      example["target"] = tf.reshape(target, [seq_len])
      example["target_mask"] = tf.reshape(target_mask, [seq_len])

    for key in list(example.keys()):
      val = example[key]
      if tf.keras.backend.is_sparse(val):
        val = tf.sparse.to_dense(val)
      if val.dtype == tf.int64:
        val = tf.cast(val, tf.int32)

      example[key] = val

    for k, v in example.items():
      logging.info("%s: %s", k, v)

    return example

  dataset = parse_files_to_dataset(
      parser=parser,
      file_paths=file_names,
      bsz_per_core=bsz_per_core,
Jing Li's avatar
Jing Li committed
567
      sequential=reuse_len > 0,
Hongkun Yu's avatar
Hongkun Yu committed
568
569
570
571
572
      input_pipeline_context=input_pipeline_context)

  return dataset


Jing Li's avatar
Jing Li committed
573
574
def format_filename(prefix, suffix, bsz_per_host, seq_len, reuse_len=None,
                    uncased=False):
Hongkun Yu's avatar
Hongkun Yu committed
575
  """Generates input file name pattern."""
Jing Li's avatar
Jing Li committed
576
577
578
  if reuse_len is not None and reuse_len > 0:
    reuse_str = "reuse-{}.".format(reuse_len)
    bsz_str = "hostbsz-{}.".format(bsz_per_host)
Hongkun Yu's avatar
Hongkun Yu committed
579
  else:
Jing Li's avatar
Jing Li committed
580
581
582
    reuse_str = ""
    bsz_str = ""

Hongkun Yu's avatar
Hongkun Yu committed
583
  if not uncased:
Jing Li's avatar
Jing Li committed
584
    case_str = ""
Hongkun Yu's avatar
Hongkun Yu committed
585
  else:
Jing Li's avatar
Jing Li committed
586
    case_str = "uncased."
Hongkun Yu's avatar
Hongkun Yu committed
587

Jing Li's avatar
Jing Li committed
588
589
  file_name = "{}.seq-{}.{}{}{}{}".format(
      prefix, seq_len, reuse_str, bsz_str, case_str, suffix)
Hongkun Yu's avatar
Hongkun Yu committed
590
591
592
593
594
595
596
597
598
599

  return file_name


def get_pretrain_input_data(batch_size,
                            seq_len,
                            strategy,
                            file_path,
                            reuse_len,
                            perm_size,
Jing Li's avatar
Jing Li committed
600
                            leak_ratio,
Hongkun Yu's avatar
Hongkun Yu committed
601
602
                            num_predict,
                            uncased,
Jing Li's avatar
Jing Li committed
603
                            online_masking_config,
Hongkun Yu's avatar
Hongkun Yu committed
604
605
606
607
608
609
610
611
                            num_hosts=1):
  """Returns input dataset from input file string."""

  # When using TPU pods, we need to clone dataset across
  # workers and need to pass in function that returns the dataset rather
  # than passing dataset instance itself.
  use_dataset_fn = isinstance(strategy, tf.distribute.experimental.TPUStrategy)
  split = "train"
Jing Li's avatar
Jing Li committed
612
  bsz_per_host = int(batch_size / num_hosts)
Hongkun Yu's avatar
Hongkun Yu committed
613
  record_glob_base = format_filename(
Jing Li's avatar
Jing Li committed
614
615
616
      prefix="meta.{}.pass-*".format(split),
      suffix="json*",
      bsz_per_host=bsz_per_host,
Hongkun Yu's avatar
Hongkun Yu committed
617
618
      seq_len=seq_len,
      reuse_len=reuse_len,
Jing Li's avatar
Jing Li committed
619
620
621
622
623
624
625
626
627
      uncased=uncased)

  def _get_num_batch(info):
    if "num_batch" in info:
      return info["num_batch"]
    elif "num_example" in info:
      return info["num_example"] / bsz_per_host
    else:
      raise ValueError("Do not have sample info.")
Hongkun Yu's avatar
Hongkun Yu committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

  if use_dataset_fn:
    if batch_size % strategy.num_replicas_in_sync != 0:
      raise ValueError(
          "Batch size must be divisible by number of replicas : {}".format(
              strategy.num_replicas_in_sync))

    # As auto rebatching is not supported in
    # `experimental_distribute_datasets_from_function()` API, which is
    # required when cloning dataset to multiple workers in eager mode,
    # we use per-replica batch size.
    batch_size = int(batch_size / strategy.num_replicas_in_sync)

  record_info = {"num_batch": 0, "filenames": []}

  tfrecord_dirs = file_path.split(",")
  logging.info("Use the following tfrecord dirs: %s", tfrecord_dirs)

  for idx, record_dir in enumerate(tfrecord_dirs):
    record_glob = os.path.join(record_dir, record_glob_base)
    logging.info("[%d] Record glob: %s", idx, record_glob)

    record_paths = sorted(tf.io.gfile.glob(record_glob))
    logging.info("[%d] Num of record info path: %d", idx, len(record_paths))

    cur_record_info = {"num_batch": 0, "filenames": []}

    for record_info_path in record_paths:
      with tf.io.gfile.GFile(record_info_path, "r") as fp:
        info = json.load(fp)
Jing Li's avatar
Jing Li committed
658
        cur_record_info["num_batch"] += int(_get_num_batch(info))
Hongkun Yu's avatar
Hongkun Yu committed
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
        cur_record_info["filenames"] += info["filenames"]

    # overwrite directory for `cur_record_info`
    new_filenames = []
    for filename in cur_record_info["filenames"]:
      basename = os.path.basename(filename)
      new_filename = os.path.join(record_dir, basename)
      new_filenames.append(new_filename)
    cur_record_info["filenames"] = new_filenames

    logging.info("[Dir %d] Number of chosen batches: %s", idx,
                 cur_record_info["num_batch"])
    logging.info("[Dir %d] Number of chosen files: %s", idx,
                 len(cur_record_info["filenames"]))
    logging.info(cur_record_info["filenames"])

    # add `cur_record_info` to global `record_info`
    record_info["num_batch"] += cur_record_info["num_batch"]
    record_info["filenames"] += cur_record_info["filenames"]

  logging.info("Total number of batches: %d", record_info["num_batch"])
  logging.info("Total number of files: %d", len(record_info["filenames"]))
  logging.info(record_info["filenames"])

  def _dataset_fn(ctx=None):
    """Function that can create a pretrain dataset."""

    train_dataset = create_pretrain_dataset(
        file_names=record_info["filenames"],
        bsz_per_core=batch_size,
        seq_len=seq_len,
        reuse_len=reuse_len,
        perm_size=perm_size,
Jing Li's avatar
Jing Li committed
692
693
        leak_ratio=leak_ratio,
        online_masking_config=online_masking_config,
Hongkun Yu's avatar
Hongkun Yu committed
694
695
696
697
698
699
700
701
702
703
        num_predict=num_predict,
        input_pipeline_context=ctx)
    return train_dataset

  return _dataset_fn if use_dataset_fn else _dataset_fn()


def parse_files_to_dataset(parser,
                           file_paths,
                           bsz_per_core,
Jing Li's avatar
Jing Li committed
704
                           sequential,
Hongkun Yu's avatar
Hongkun Yu committed
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
                           input_pipeline_context=None):
  """Creates the dataset given file paths."""

  dataset = tf.data.Dataset.from_tensor_slices(file_paths)

  # Note: we cannot perform sample-level shuffle here because this will violate
  # the consecutive requirement of data stream.

  if input_pipeline_context and input_pipeline_context.num_input_pipelines > 1:
    dataset = dataset.shard(input_pipeline_context.num_input_pipelines,
                            input_pipeline_context.input_pipeline_id)
  # file-level shuffle
  if len(file_paths) > 1:
    dataset = dataset.shuffle(len(file_paths))

Jing Li's avatar
Jing Li committed
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
  if sequential:
    # Note: cannot perform sample-level shuffle here because this will violate
    # the consecutive requirement of data stream.
    dataset = tf.data.TFRecordDataset(dataset)
  else:
    # `cycle_length` is the number of parallel files that get read.
    cycle_length = min(8, len(file_paths))
    logging.info("Interleave %d files", cycle_length)

    # `sloppy` mode means that the interleaving is not exact. This adds
    # even more randomness to the training pipeline.
    dataset = dataset.apply(
        tf.data.experimental.parallel_interleave(
            tf.data.TFRecordDataset,
            sloppy=True,
            cycle_length=cycle_length))
    buffer_size = 2048
    logging.info("Perform sample-level shuffle with size %d", buffer_size)
    dataset = dataset.shuffle(buffer_size=buffer_size)

Hongkun Yu's avatar
Hongkun Yu committed
740
741
742
743
744
745
746
747
748
749
750
  # (zihang): since we are doing online preprocessing, the parsed result of
  # the same input at each time will be different. Thus, cache processed data
  # is not helpful. It will use a lot of memory and lead to contrainer OOM.
  # So, change to cache non-parsed raw data instead.
  dataset = dataset.cache().map(parser).repeat()
  dataset = dataset.batch(bsz_per_core, drop_remainder=True)
  dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)

  return dataset


Jing Li's avatar
Jing Li committed
751
def _local_perm(inputs, is_masked, perm_size, seq_len, leak_ratio):
Hongkun Yu's avatar
Hongkun Yu committed
752
753
754
755
756
757
758
759
760
761
762
  """Samples a permutation of the factorization order.

     Creates perm_mask and target_mask accordingly.

  Args:
    inputs: int64 Tensor in shape [seq_len], input ids.
    is_masked: bool Tensor in shape [seq_len]. True means being selected for
      partial prediction.
    perm_size: the length of longest permutation. Could be set to be reuse_len.
      Should not be larger than reuse_len or there will be data leaks.
    seq_len: int, sequence length.
Jing Li's avatar
Jing Li committed
763
    leak_ratio: float, percent of masked tokens that are leaked.
Hongkun Yu's avatar
Hongkun Yu committed
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792

  Returns:
    perm_mask: float32 Tensor in shape [seq_len, seq_len] consisted of 0 and 1.
    If perm_mask[i][j] == 1, it means the ith token (in original order) cannot
    attend to the jth token
    (in original order). This case will happen only when the ith token's
    permutated position <= the jth token's permutated position,
    and the jth token is masked or is func token. If perm_mask[i][j] == 0, it
    means the ith token (in original order) can attend to the jth token
    (in original order). Note that non-masked tokens can be attended by all
    other tokens, which is different from the description in original paper.
    target_mask: float32 Tensor in shape [seq_len] consisted of 0 and 1. If
    target_mask[i] == 1,
    the ith token needs to be predicted and mask will be used as input. This
    token will count for loss.
    If target_mask[i] == 0, token (or [SEP], [CLS]) will be used as input. This
    token will not count for loss.
    inputs_k: int64 Tensor in shape [seq_len], input ids.
    inputs_q: float32 Tensor in shape [seq_len], the same as target_mask.

  """

  # Generate permutation indices
  index = tf.range(seq_len, dtype=tf.int64)
  index = tf.transpose(tf.reshape(index, [-1, perm_size]))
  index = tf.random.shuffle(index)
  index = tf.reshape(tf.transpose(index), [-1])

  # non-functional tokens
Jing Li's avatar
Jing Li committed
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
  non_func_tokens = tf.logical_not(tf.logical_or(
      tf.equal(inputs, SEP_ID),
      tf.equal(inputs, CLS_ID)))
  masked_tokens = tf.logical_and(is_masked, non_func_tokens)
  non_masked_or_func_tokens = tf.logical_not(masked_tokens)

  smallest_index = -2 * tf.ones([seq_len], dtype=tf.int64)

  # Similar to BERT, randomly leak some masked tokens
  if leak_ratio > 0:
    leak_tokens = tf.logical_and(
        masked_tokens,
        tf.random.uniform([seq_len], maxval=1.0) < leak_ratio)
    can_attend_self = tf.logical_or(non_masked_or_func_tokens, leak_tokens)
  else:
    can_attend_self = non_masked_or_func_tokens
  to_index = tf.where(can_attend_self, smallest_index, index)
  from_index = tf.where(can_attend_self, to_index + 1, to_index)

  # For masked tokens, can attend if i > j
  # For context tokens, always can attend each other
  can_attend = from_index[:, None] > to_index[None, :]

  # In modeling, 1 indicates cannot attend. Hence, reverse the value here.
  perm_mask = 1.0 - tf.cast(can_attend, tf.float32)

  # Only masked tokens are included in the loss
  target_mask = tf.cast(masked_tokens, tf.float32)
Hongkun Yu's avatar
Hongkun Yu committed
821
822
823
824
825

  # construct inputs_k
  inputs_k = inputs

  # construct inputs_q
Jing Li's avatar
Jing Li committed
826
  inputs_q = masked_tokens
Hongkun Yu's avatar
Hongkun Yu committed
827

Jing Li's avatar
Jing Li committed
828
  return perm_mask, target_mask, inputs_k, inputs_q