train.py 2.89 KB
Newer Older
vishnubanna's avatar
vishnubanna committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""TensorFlow Model Garden Vision training driver."""

from absl import app
from absl import flags
import gin

from official.common import distribute_utils
from official.common import flags as tfm_flags
from official.core import task_factory
from official.core import train_lib
26
from official.core import train_utils
vishnubanna's avatar
vishnubanna committed
27
from official.modeling import performance
28
from official.vision.beta.projects.yolo.common import registry_imports  # pylint: disable=unused-import
vishnubanna's avatar
vishnubanna committed
29
30
31

FLAGS = flags.FLAGS

32
'''
33
python3 -m official.vision.beta.projects.yolo.train --mode=train_and_eval --experiment=darknet_classification --model_dir=training_dir --config_file=official/vision/beta/projects/yolo/configs/experiments/darknet53_tfds.yaml
34
35
'''

36

vishnubanna's avatar
vishnubanna committed
37
38
def main(_):
  gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_params)
39
  print(FLAGS.experiment)
vishnubanna's avatar
vishnubanna committed
40
  params = train_utils.parse_configuration(FLAGS)
41

vishnubanna's avatar
vishnubanna committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
  model_dir = FLAGS.model_dir
  if 'train' in FLAGS.mode:
    # Pure eval modes do not output yaml files. Otherwise continuous eval job
    # may race against the train job for writing the same file.
    train_utils.serialize_config(params, model_dir)

  # Sets mixed_precision policy. Using 'mixed_float16' or 'mixed_bfloat16'
  # can have significant impact on model speeds by utilizing float16 in case of
  # GPUs, and bfloat16 in the case of TPUs. loss_scale takes effect only when
  # dtype is float16
  if params.runtime.mixed_precision_dtype:
    performance.set_mixed_precision_policy(params.runtime.mixed_precision_dtype,
                                           params.runtime.loss_scale)
  distribution_strategy = distribute_utils.get_distribution_strategy(
      distribution_strategy=params.runtime.distribution_strategy,
      all_reduce_alg=params.runtime.all_reduce_alg,
      num_gpus=params.runtime.num_gpus,
      tpu_address=params.runtime.tpu)
  with distribution_strategy.scope():
    task = task_factory.get_task(params.task, logging_dir=model_dir)

  train_lib.run_experiment(
      distribution_strategy=distribution_strategy,
      task=task,
      mode=FLAGS.mode,
      params=params,
      model_dir=model_dir)

Le Hou's avatar
Le Hou committed
70
71
  train_utils.save_gin_config(FLAGS.mode, model_dir)

vishnubanna's avatar
vishnubanna committed
72
73
74
if __name__ == '__main__':
  tfm_flags.define_flags()
  app.run(main)