"git@developer.sourcefind.cn:hehl2/torchaudio.git" did not exist on "11fb22aae80a60fd867ce87ff8795256b0f733cd"
Commit 73a2818d authored by vishnubanna's avatar vishnubanna
Browse files

PR1 darknet

parent 7beddae1
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""All necessary imports for registration."""
# pylint: disable=unused-import
from official.nlp import tasks as nlp_task
from official.utils.testing import mock_task
from official.vision import beta
from official.vision.beta.projects import yolo
"""Backbones configurations."""
# Import libraries
import dataclasses
from typing import Optional
from official.modeling import hyperparams
from official.vision.beta.configs import backbones
@dataclasses.dataclass
class DarkNet(hyperparams.Config):
"""DarkNet config."""
model_id: str = "darknet53"
@dataclasses.dataclass
class Backbone(backbones.Backbone):
darknet: DarkNet = DarkNet()
runtime:
distribution_strategy: 'mirrored'
mixed_precision_dtype: 'float32'
loss_scale: 'dynamic'
task:
model:
num_classes: 1001
input_size: [224, 224, 3]
backbone:
type: 'darknet'
losses:
l2_weight_decay: 0.0005
one_hot: True
label_smoothing: 0.1
train_data:
tfds_name: 'imagenet_a'
tfds_split: 'test'
tfds_download: True
is_training: True
global_batch_size: 128
dtype: 'float16'
validation_data:
tfds_name: 'imagenet_a'
tfds_split: 'test'
tfds_download: True
is_training: False
global_batch_size: 128
dtype: 'float16'
drop_remainder: False
trainer:
train_steps: 800000 # in the paper
validation_steps: 400 # size of validation data
validation_interval: 10000
steps_per_loop: 10000
summary_interval: 10000
checkpoint_interval: 10000
optimizer_config:
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
learning_rate:
type: 'polynomial'
polynomial:
initial_learning_rate: 0.1
end_learning_rate: 0.0001
power: 4.0
decay_steps: 799000
warmup:
type: 'linear'
linear:
warmup_steps: 1000 #lr rise from 0 to 0.1 over 1000 steps
import importlib
import collections
from typing import *
import tensorflow as tf
import tensorflow.keras as ks
import official.vision.beta.projects.yolo.modeling.building_blocks as nn_blocks
from official.vision.beta.modeling.backbones import factory
# builder required classes
class CSPBlockConfig(object):
def __init__(self, layer, stack, reps, bottleneck, filters, kernel_size,
strides, padding, activation, route, output_name, is_output):
'''
get layer config to make code more readable
Args:
layer: string layer name
reps: integer for the number of times to repeat block
filters: integer for the filter for this layer, or the output depth
kernel_size: integer or none, if none, it implies that the the building block handles this automatically. not a layer input
downsample: boolean, to down sample the input width and height
output: boolean, true if the layer is required as an output
'''
self.layer = layer
self.stack = stack
self.repetitions = reps
self.bottleneck = bottleneck
self.filters = filters
self.kernel_size = kernel_size
self.strides = strides
self.padding = padding
self.activation = activation
self.route = route
self.output_name = output_name
self.is_output = is_output
return
def csp_build_block_specs(config):
specs = []
for layer in config:
specs.append(CSPBlockConfig(*layer))
return specs
class layer_registry(object):
def __init__(self):
self._layer_dict = {"DarkTiny": (nn_blocks.DarkTiny, darktiny_config_todict),
"DarkConv": (nn_blocks.DarkConv, darkconv_config_todict),
"MaxPool": (tf.keras.layers.MaxPool2D, maxpool_config_todict)}
return
def _get_layer(self, key):
return self._layer_dict[key]
def __call__(self, config, kwargs):
layer, get_param_dict = self._get_layer(config.layer)
param_dict = get_param_dict(config, kwargs)
return layer(**param_dict)
def darkconv_config_todict(config, kwargs):
dictvals = {
"filters" : config.filters,
"kernel_size" : config.kernel_size,
"strides" : config.strides,
"padding" : config.padding
}
dictvals.update(kwargs)
return dictvals
def darktiny_config_todict(config, kwargs):
dictvals = {
"filters" : config.filters,
"strides" : config.strides}
dictvals.update(kwargs)
return dictvals
def maxpool_config_todict(config, kwargs):
return {"pool_size": config.kernel_size,
"strides": config.strides,
"padding": config.padding,
"name": kwargs["name"]}
# model configs
LISTNAMES = ["default_layer_name", "level_type", "number_of_layers_in_level", "bottleneck", "filters", "kernal_size", "strides", "padding", "default_activation", "route", "level/name", "is_output"]
CSPDARKNET53 = {
"list_names": LISTNAMES,
"splits": {"backbone_split": 106,
"neck_split": 138},
"backbone": [
["DarkConv", None, 1, False, 32, 3, 1, "same", "mish", -1, 0, False], # 1
["DarkRes", "csp", 1, True, 64, None, None, None, "mish", -1, 1, False], # 3
["DarkRes", "csp", 2, False, 128, None, None, None, "mish", -1, 2, False], # 2
["DarkRes", "csp", 8, False, 256, None, None, None, "mish", -1, 3, True],
["DarkRes", "csp", 8, False, 512, None, None, None, "mish", -1, 4, True], # 3
["DarkRes", "csp", 4, False, 1024, None, None, None, "mish", -1, 5, True], # 6 #route
]
}
DARKNET53 = {
"list_names": LISTNAMES,
"splits": {"backbone_split": 76},
"backbone": [
["DarkConv", None, 1, False, 32, 3, 1, "same", "leaky", -1, 0, False], # 1
["DarkRes", "residual", 1, True, 64, None, None, None, "leaky", -1, 1, False], # 3
["DarkRes", "residual", 2, False, 128, None, None, None, "leaky", -1, 2, False], # 2
["DarkRes", "residual", 8, False, 256, None, None, None, "leaky", -1, 3, True],
["DarkRes", "residual", 8, False, 512, None, None, None, "leaky", -1, 4, True], # 3
["DarkRes", "residual", 4, False, 1024, None, None, None, "leaky", -1, 5, True], # 6
]
}
CSPDARKNETTINY = {
"list_names": LISTNAMES,
"splits": {"backbone_split": 28},
"backbone": [
["DarkConv", None, 1, False, 32, 3, 2, "same", "leaky", -1, 0, False], # 1
["DarkConv", None, 1, False, 64, 3, 2, "same", "leaky", -1, 1, False], # 1
["CSPTiny", "csp_tiny", 1, False, 64, 3, 2, "same", "leaky", -1, 2, False], # 3
["CSPTiny", "csp_tiny", 1, False, 128, 3, 2, "same", "leaky", -1, 3, False], # 3
["CSPTiny", "csp_tiny", 1, False, 256, 3, 2, "same", "leaky", -1, 4, True], # 3
["DarkConv", None, 1, False, 512, 3, 1, "same", "leaky", -1, 5, True], # 1
]
}
DARKNETTINY = {
"list_names": LISTNAMES,
"splits": {"backbone_split": 14},
"backbone": [
["DarkConv", None, 1, False, 16, 3, 1, "same", "leaky", -1, 0, False], # 1
["DarkTiny", None, 1, True, 32, 3, 2, "same", "leaky", -1, 1, False], # 3
["DarkTiny", None, 1, True, 64, 3, 2, "same", "leaky", -1, 2, False], # 3
["DarkTiny", None, 1, False, 128, 3, 2, "same", "leaky", -1, 3, False], # 2
["DarkTiny", None, 1, False, 256, 3, 2, "same", "leaky", -1, 4, True],
["DarkTiny", None, 1, False, 512, 3, 2, "same", "leaky", -1, 5, False], # 3
["DarkTiny", None, 1, False, 1024, 3, 1, "same", "leaky", -1, 5, True], # 6 #route
]
}
BACKBONES = {"darknettiny": DARKNETTINY,
"darknet53": DARKNET53,
"cspdarknet53": CSPDARKNET53,
"cspdarknettiny": CSPDARKNETTINY}
@ks.utils.register_keras_serializable(package='yolo')
class Darknet(ks.Model):
def __init__(self,
model_id="darknet53",
input_shape=tf.keras.layers.InputSpec(shape = [None, None, None, 3]),
min_size = None,
max_size = 5,
activation = None,
use_sync_bn = False,
norm_momentum = 0.99,
norm_epsilon = 0.001,
kernel_initializer = 'glorot_uniform',
kernel_regularizer = None,
bias_regularizer = None,
config=None,
**kwargs):
layer_specs, splits = Darknet.get_config(model_id)
self._model_name = model_id
self._splits = splits
self._input_shape = input_shape
self._registry = layer_registry()
# default layer look up
self._min_size = min_size
self._max_size = max_size
self._output_specs = None
self._kernel_initializer = kernel_initializer
self._bias_regularizer = bias_regularizer
self._norm_momentum = norm_momentum
self._norm_epislon = norm_epsilon
self._use_sync_bn = use_sync_bn
self._activation = activation
self._weight_decay = kernel_regularizer
self._default_dict = {"kernel_initializer": self._kernel_initializer,
"weight_decay": self._weight_decay,
"bias_regularizer": self._bias_regularizer,
"norm_momentum": self._norm_momentum,
"norm_epsilon": self._norm_epislon,
"use_sync_bn": self._use_sync_bn,
"activation": self._activation,
"name": None}
inputs = ks.layers.Input(shape=self._input_shape.shape[1:])
output = self._build_struct(layer_specs, inputs)
super().__init__(inputs=inputs, outputs=output, name=self._model_name)
return
@property
def input_specs(self):
return self._input_shape
@property
def output_specs(self):
return self._output_specs
@property
def splits(self):
return self._splits
def _build_struct(self, net, inputs):
endpoints = collections.OrderedDict()
stack_outputs = [inputs]
for i, config in enumerate(net):
if config.stack == None:
x = self._build_block(stack_outputs[config.route],
config,
name=f"{config.layer}_{i}")
stack_outputs.append(x)
elif config.stack == "residual":
x = self._residual_stack(stack_outputs[config.route],
config,
name=f"{config.layer}_{i}")
stack_outputs.append(x)
elif config.stack == "csp":
x = self._csp_stack(stack_outputs[config.route],
config,
name=f"{config.layer}_{i}")
stack_outputs.append(x)
elif config.stack == "csp_tiny":
x_pass, x = self._tiny_stack(stack_outputs[config.route],
config,
name=f"{config.layer}_{i}")
stack_outputs.append(x_pass)
if (config.is_output and self._min_size == None):# or isinstance(config.output_name, str):
endpoints[config.output_name] = x
elif self._min_size != None and config.output_name >= self._min_size and config.output_name <= self._max_size:
endpoints[config.output_name] = x
self._output_specs = {l: endpoints[l].get_shape() for l in endpoints.keys()}
return endpoints
def _get_activation(self, activation):
if self._activation == None:
return activation
else:
return self._activation
def _csp_stack(self, inputs, config, name):
if config.bottleneck:
csp_filter_reduce = 1
residual_filter_reduce = 2
scale_filters = 1
else:
csp_filter_reduce = 2
residual_filter_reduce = 1
scale_filters = 2
self._default_dict["activation"] = self._get_activation(config.activation)
self._default_dict["name"] = f"{name}_csp_down"
x, x_route = nn_blocks.CSPDownSample(filters = config.filters,
filter_reduce = csp_filter_reduce,
**self._default_dict)(inputs)
for i in range(config.repetitions):
self._default_dict["name"] = f"{name}_{i}"
x = nn_blocks.DarkResidual(
filters=config.filters // scale_filters,
filter_scale=residual_filter_reduce,
**self._default_dict)(x)
self._default_dict["name"] = f"{name}_csp_connect"
output = nn_blocks.CSPConnect(filters=config.filters,
filter_reduce=csp_filter_reduce,
**self._default_dict)([x, x_route])
self._default_dict["activation"] = self._activation
self._default_dict["name"] = None
return output
def _tiny_stack(self, inputs, config, name):
self._default_dict["activation"] = self._get_activation(config.activation)
self._default_dict["name"] = f"{name}_tiny"
x, x_route = nn_blocks.CSPTiny(filters=config.filters,
**self._default_dict)(inputs)
self._default_dict["activation"] = self._activation
self._default_dict["name"] = None
return x, x_route
def _residual_stack(self, inputs, config, name):
self._default_dict["activation"] = self._get_activation(config.activation)
self._default_dict["name"] = f"{name}_residual_down"
x = nn_blocks.DarkResidual(
filters = config.filters,
downsample = True,
**self._default_dict)(inputs)
for i in range(config.repetitions - 1):
self._default_dict["name"] = f"{name}_{i}"
x = nn_blocks.DarkResidual(
filters = config.filters,
**self._default_dict)(x)
self._default_dict["activation"] = self._activation
self._default_dict["name"] = None
return x
def _build_block(self, inputs, config, name):
x = inputs
i = 0
self._default_dict["activation"] = self._get_activation(config.activation)
while i < config.repetitions:
self._default_dict["name"] = f"{name}_{i}"
layer = self._registry(config, self._default_dict)
x = layer(x)
i += 1
self._default_dict["activation"] = self._activation
self._default_dict["name"] = None
return x
@staticmethod
def get_model_config(name):
name = name.lower()
backbone = BACKBONES[name]["backbone"]
splits = BACKBONES[name]["splits"]
return csp_build_block_specs(backbone), splits
@factory.register_backbone_builder('darknet')
def build_darknet(
input_specs: tf.keras.layers.InputSpec,
model_config,
l2_regularizer: tf.keras.regularizers.Regularizer = None) -> tf.keras.Model:
backbone_type = model_config.backbone.type
backbone_cfg = model_config.backbone.get()
norm_activation_config = model_config.norm_activation
return Darknet(model_id=backbone_cfg.model_id,
input_shape=input_specs,
activation=norm_activation_config.activation,
use_sync_bn=norm_activation_config.use_sync_bn,
norm_momentum=norm_activation_config.norm_momentum,
norm_epsilon=norm_activation_config.norm_epsilon,
kernel_regularizer=l2_regularizer)
# if __name__ == "__main__":
# from yolo.configs import backbones
# from official.core import registry
# model = backbones.Backbone(type="darknet", darknet=backbones.DarkNet(model_id="darknet53"))
# cfg = temp(model)
# model = factory.build_backbone(tf.keras.layers.InputSpec(shape = [None, 416, 416, 3]), cfg, None)
# print(model.output_specs)
import tensorflow as tf
import tensorflow.keras as ks
from ._DarkConv import DarkConv
@ks.utils.register_keras_serializable(package='yolo')
class CSPConnect(ks.layers.Layer):
def __init__(
self,
filters,
filter_reduce=2,
activation="mish",
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
bias_regularizer=None,
weight_decay=None, # default find where is it is stated
use_bn=True,
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
**kwargs):
super().__init__(**kwargs)
#layer params
self._filters = filters
self._filter_reduce = filter_reduce
self._activation = activation
#convoultion params
self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer
self._weight_decay = weight_decay
self._bias_regularizer = bias_regularizer
self._use_bn = use_bn
self._use_sync_bn = use_sync_bn
self._norm_moment = norm_momentum
self._norm_epsilon = norm_epsilon
return
def build(self, input_shape):
self._conv1 = DarkConv(filters=self._filters // self._filter_reduce,
kernel_size=(1, 1),
strides=(1, 1),
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._activation)
self._concat = ks.layers.Concatenate(axis=-1)
self._conv2 = DarkConv(filters=self._filters,
kernel_size=(1, 1),
strides=(1, 1),
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._activation)
return
def call(self, inputs):
x_prev, x_csp = inputs
x = self._conv1(x_prev)
x = self._concat([x, x_csp])
x = self._conv2(x)
return x
import tensorflow as tf
import tensorflow.keras as ks
from ._DarkConv import DarkConv
@ks.utils.register_keras_serializable(package='yolo')
class CSPDownSample(ks.layers.Layer):
def __init__(
self,
filters,
filter_reduce=2,
activation="mish",
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
bias_regularizer=None,
weight_decay=None, # default find where is it is stated
use_bn=True,
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
**kwargs):
super().__init__(**kwargs)
#layer params
self._filters = filters
self._filter_reduce = filter_reduce
self._activation = activation
#convoultion params
self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer
self._weight_decay = weight_decay
self._bias_regularizer = bias_regularizer
self._use_bn = use_bn
self._use_sync_bn = use_sync_bn
self._norm_moment = norm_momentum
self._norm_epsilon = norm_epsilon
return
def build(self, input_shape):
self._conv1 = DarkConv(filters=self._filters,
kernel_size=(3, 3),
strides=(2, 2),
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._activation)
self._conv2 = DarkConv(filters=self._filters // self._filter_reduce,
kernel_size=(1, 1),
strides=(1, 1),
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._activation)
self._conv3 = DarkConv(filters=self._filters // self._filter_reduce,
kernel_size=(1, 1),
strides=(1, 1),
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._activation)
return
def call(self, inputs):
x = self._conv1(inputs)
y = self._conv2(x)
x = self._conv3(x)
return (x, y)
"""Contains common building blocks for yolo neural networks."""
import tensorflow as tf
import tensorflow.keras as ks
from ._DarkConv import DarkConv
@ks.utils.register_keras_serializable(package='yolo')
class CSPTiny(ks.layers.Layer):
def __init__(self,
filters=1,
use_bias=True,
kernel_initializer = 'glorot_uniform',
bias_initializer = 'zeros',
bias_regularizer = None,
weight_decay= None, # default find where is it is stated
use_bn=True,
use_sync_bn=False,
group_id = 1,
groups = 2,
norm_momentum=0.99,
norm_epsilon=0.001,
activation='leaky',
downsample = True,
leaky_alpha=0.1,
**kwargs):
# darkconv params
self._filters = filters
self._use_bias = use_bias
self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer
self._bias_regularizer = bias_regularizer
self._use_bn = use_bn
self._use_sync_bn = use_sync_bn
self._weight_decay=weight_decay
self._groups = groups
self._group_id = group_id
self._downsample = downsample
# normal params
self._norm_moment = norm_momentum
self._norm_epsilon = norm_epsilon
# activation params
self._conv_activation = activation
self._leaky_alpha = leaky_alpha
super().__init__(**kwargs)
return
def build(self, input_shape):
self._convlayer1 = DarkConv(filters=self._filters,
kernel_size=(3, 3),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer = self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
leaky_alpha=self._leaky_alpha)
self._convlayer2 = DarkConv(filters=self._filters//2,
kernel_size=(3, 3),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer = self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
leaky_alpha=self._leaky_alpha)
self._convlayer3 = DarkConv(filters=self._filters//2,
kernel_size=(3, 3),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer = self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
leaky_alpha=self._leaky_alpha)
self._convlayer4 = DarkConv(filters=self._filters,
kernel_size=(1, 1),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer = self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
leaky_alpha=self._leaky_alpha)
self._maxpool = tf.keras.layers.MaxPool2D(pool_size=2,
strides=2,
padding="same",
data_format=None)
super().build(input_shape)
return
def call(self, inputs):
x1 = self._convlayer1(inputs)
x2 = tf.split(x1, self._groups, axis = -1)
x3 = self._convlayer2(x2[self._group_id])
x4 = self._convlayer3(x3)
x5 = tf.concat([x4, x3], axis = -1)
x6 = self._convlayer4(x5)
x = tf.concat([x1, x6], axis = - 1)
if self._downsample:
x = self._maxpool(x)
return x, x6
def get_config(self):
# used to store/share parameters to reconsturct the model
layer_config = {
"filters": self._filters,
"use_bias": self._use_bias,
"strides": self._strides,
"kernel_initializer": self._kernel_initializer,
"bias_initializer": self._bias_initializer,
"weight_decay": self._weight_decay,
"use_bn": self._use_bn,
"use_sync_bn": self._use_sync_bn,
"norm_moment": self._norm_moment,
"norm_epsilon": self._norm_epsilon,
"activation": self._conv_activation,
"leaky_alpha": self._leaky_alpha,
"sc_activation": self._sc_activation,
}
layer_config.update(super().get_config())
return layer_config
"""Contains common building blocks for yolo neural networks."""
from functools import partial
import tensorflow as tf
import tensorflow.keras as ks
import tensorflow.keras.backend as K
from ._Identity import Identity
from yolo.modeling.functions.mish_activation import mish
@ks.utils.register_keras_serializable(package='yolo')
class DarkConv(ks.layers.Layer):
def __init__(
self,
filters=1,
kernel_size=(1, 1),
strides=(1, 1),
padding='same',
dilation_rate=(1, 1),
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
bias_regularizer=None,
weight_decay=None, # default find where is it is stated
use_bn=True,
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
activation='leaky',
leaky_alpha=0.1,
**kwargs):
'''
Modified Convolution layer to match that of the DarkNet Library
Args:
filters: integer for output depth, or the number of features to learn
kernel_size: integer or tuple for the shape of the weight matrix or kernel to learn
strides: integer of tuple how much to move the kernel after each kernel use
padding: string 'valid' or 'same', if same, then pad the image, else do not
dialtion_rate: tuple to indicate how much to modulate kernel weights and
the how many pixels ina featur map to skip
use_bias: boolean to indicate wither to use bias in convolution layer
kernel_initializer: string to indicate which function to use to initialize weigths
bias_initializer: string to indicate which function to use to initialize bias
l2_regularization: float to use as a constant for weight regularization
use_bn: boolean for wether to use batchnormalization
use_sync_bn: boolean for wether sync batch normalization statistics
of all batch norm layers to the models global statistics (across all input batches)
norm_moment: float for moment to use for batchnorm
norm_epsilon: float for batchnorm epsilon
activation: string or None for activation function to use in layer,
if None activation is replaced by linear
leaky_alpha: float to use as alpha if activation function is leaky
**kwargs: Keyword Arguments
'''
# convolution params
self._filters = filters
self._kernel_size = kernel_size
self._strides = strides
self._padding = padding
self._dilation_rate = dilation_rate
self._use_bias = use_bias
self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer
self._weight_decay = weight_decay
self._bias_regularizer = bias_regularizer
# batchnorm params
self._use_bn = use_bn
if self._use_bn:
self._use_bias = False
self._use_sync_bn = use_sync_bn
self._norm_moment = norm_momentum
self._norm_epsilon = norm_epsilon
if tf.keras.backend.image_data_format() == 'channels_last':
# format: (batch_size, height, width, channels)
self._bn_axis = -1
else:
# format: (batch_size, channels, width, height)
self._bn_axis = 1
# activation params
if activation is None:
self._activation = 'linear'
else:
self._activation = activation
self._leaky_alpha = leaky_alpha
super(DarkConv, self).__init__(**kwargs)
return
def build(self, input_shape):
kernel_size = self._kernel_size if type(
self._kernel_size) == int else self._kernel_size[0]
if self._padding == "same" and kernel_size != 1:
self._zeropad = ks.layers.ZeroPadding2D(
((1, 1), (1, 1))) # symetric padding
else:
self._zeropad = Identity()
self.conv = ks.layers.Conv2D(
filters=self._filters,
kernel_size=self._kernel_size,
strides=self._strides,
padding="valid", #self._padding,
dilation_rate=self._dilation_rate,
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
kernel_regularizer=self._weight_decay,
bias_regularizer=self._bias_regularizer)
#self.conv =tf.nn.convolution(filters=self._filters, strides=self._strides, padding=self._padding
if self._use_bn:
if self._use_sync_bn:
self.bn = tf.keras.layers.experimental.SyncBatchNormalization(
momentum=self._norm_moment,
epsilon=self._norm_epsilon,
axis=self._bn_axis)
else:
self.bn = ks.layers.BatchNormalization(
momentum=self._norm_moment,
epsilon=self._norm_epsilon,
axis=self._bn_axis)
else:
self.bn = Identity()
if self._activation == 'leaky':
alpha = {"alpha": self._leaky_alpha}
self._activation_fn = partial(tf.nn.leaky_relu, **alpha)
elif self._activation == 'mish':
self._activation_fn = mish()
else:
self._activation_fn = ks.layers.Activation(
activation=self._activation)
super(DarkConv, self).build(input_shape)
return
def call(self, inputs):
x = self._zeropad(inputs)
x = self.conv(x)
x = self.bn(x)
x = self._activation_fn(x)
return x
def get_config(self):
# used to store/share parameters to reconsturct the model
layer_config = {
"filters": self._filters,
"kernel_size": self._kernel_size,
"strides": self._strides,
"padding": self._padding,
"dilation_rate": self._dilation_rate,
"use_bias": self._use_bias,
"kernel_initializer": self._kernel_initializer,
"bias_initializer": self._bias_initializer,
"bias_regularizer": self._bias_regularizer,
"l2_regularization": self._l2_regularization,
"use_bn": self._use_bn,
"use_sync_bn": self._use_sync_bn,
"norm_moment": self._norm_moment,
"norm_epsilon": self._norm_epsilon,
"activation": self._activation,
"leaky_alpha": self._leaky_alpha
}
layer_config.update(super(DarkConv, self).get_config())
return layer_config
def __repr__(self):
return repr(self.get_config())
"""Contains common building blocks for yolo neural networks."""
import tensorflow as tf
import tensorflow.keras as ks
from ._DarkConv import DarkConv
from ._Identity import Identity
@ks.utils.register_keras_serializable(package='yolo')
class DarkResidual(ks.layers.Layer):
def __init__(self,
filters=1,
filter_scale=2,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
weight_decay= None,
bias_regularizer = None,
use_bn=True,
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
activation='leaky',
leaky_alpha=0.1,
sc_activation='linear',
downsample=False,
**kwargs):
'''
DarkNet block with Residual connection for Yolo v3 Backbone
Args:
filters: integer for output depth, or the number of features to learn
use_bias: boolean to indicate wither to use bias in convolution layer
kernel_initializer: string to indicate which function to use to initialize weigths
bias_initializer: string to indicate which function to use to initialize bias
use_bn: boolean for wether to use batchnormalization
use_sync_bn: boolean for wether sync batch normalization statistics
of all batch norm layers to the models global statistics (across all input batches)
norm_moment: float for moment to use for batchnorm
norm_epsilon: float for batchnorm epsilon
conv_activation: string or None for activation function to use in layer,
if None activation is replaced by linear
leaky_alpha: float to use as alpha if activation function is leaky
sc_activation: string for activation function to use in layer
downsample: boolean for if image input is larger than layer output, set downsample to True
so the dimentions are forced to match
**kwargs: Keyword Arguments
'''
# downsample
self._downsample = downsample
# darkconv params
self._filters = filters
self._filter_scale = filter_scale
self._use_bias = use_bias
self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer
self._bias_regularizer = bias_regularizer
self._use_bn = use_bn
self._use_sync_bn = use_sync_bn
self._weight_decay=weight_decay
# normal params
self._norm_moment = norm_momentum
self._norm_epsilon = norm_epsilon
# activation params
self._conv_activation = activation
self._leaky_alpha = leaky_alpha
self._sc_activation = sc_activation
super().__init__(**kwargs)
return
def build(self, input_shape):
if self._downsample:
self._dconv = DarkConv(filters=self._filters,
kernel_size=(3, 3),
strides=(2, 2),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
weight_decay=self._weight_decay,
leaky_alpha=self._leaky_alpha)
else:
self._dconv = Identity()
self._conv1 = DarkConv(filters=self._filters // self._filter_scale,
kernel_size=(1, 1),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
weight_decay=self._weight_decay,
leaky_alpha=self._leaky_alpha)
self._conv2 = DarkConv(filters=self._filters,
kernel_size=(3, 3),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
weight_decay=self._weight_decay,
leaky_alpha=self._leaky_alpha)
self._shortcut = ks.layers.Add()
self._activation_fn = ks.layers.Activation(
activation=self._sc_activation)
super().build(input_shape)
return
def call(self, inputs):
shortcut = self._dconv(inputs)
x = self._conv1(shortcut)
x = self._conv2(x)
x = self._shortcut([x, shortcut])
return self._activation_fn(x)
def get_config(self):
# used to store/share parameters to reconsturct the model
layer_config = {
"filters": self._filters,
"use_bias": self._use_bias,
"kernel_initializer": self._kernel_initializer,
"bias_initializer": self._bias_initializer,
"weight_decay": self._weight_decay,
"use_bn": self._use_bn,
"use_sync_bn": self._use_sync_bn,
"norm_moment": self._norm_moment,
"norm_epsilon": self._norm_epsilon,
"activation": self._conv_activation,
"leaky_alpha": self._leaky_alpha,
"sc_activation": self._sc_activation,
"downsample": self._downsample
}
layer_config.update(super().get_config())
return layer_config
"""Contains common building blocks for yolo neural networks."""
import tensorflow as tf
import tensorflow.keras as ks
from ._DarkConv import DarkConv
@ks.utils.register_keras_serializable(package='yolo')
class DarkTiny(ks.layers.Layer):
def __init__(self,
filters=1,
use_bias=True,
strides=2,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
bias_regularizer = None,
weight_decay= None, # default find where is it is stated
use_bn=True,
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
activation='leaky',
leaky_alpha=0.1,
sc_activation='linear',
**kwargs):
# darkconv params
self._filters = filters
self._use_bias = use_bias
self._kernel_initializer = kernel_initializer
self._bias_initializer = bias_initializer
self._bias_regularizer=bias_regularizer
self._use_bn = use_bn
self._use_sync_bn = use_sync_bn
self._strides = strides
self._weight_decay=weight_decay
# normal params
self._norm_moment = norm_momentum
self._norm_epsilon = norm_epsilon
# activation params
self._conv_activation = activation
self._leaky_alpha = leaky_alpha
self._sc_activation = sc_activation
super().__init__(**kwargs)
return
def build(self, input_shape):
# if self._strides == 2:
# self._zeropad = ks.layers.ZeroPadding2D(((1,0), (1,0)))
# padding = "valid"
# else:
# self._zeropad = ks.layers.ZeroPadding2D(((0,1), (0,1)))#nn_blocks.Identity()#ks.layers.ZeroPadding2D(((1,0), (1,0)))
# padding = "valid"
self._maxpool = tf.keras.layers.MaxPool2D(pool_size=2,
strides=self._strides,
padding="same",
data_format=None)
self._convlayer = DarkConv(filters=self._filters,
kernel_size=(3, 3),
strides=(1, 1),
padding='same',
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
weight_decay=self._weight_decay,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
leaky_alpha=self._leaky_alpha)
super().build(input_shape)
return
def call(self, inputs):
output = self._maxpool(inputs)
output = self._convlayer(output)
return output
def get_config(self):
# used to store/share parameters to reconsturct the model
layer_config = {
"filters": self._filters,
"use_bias": self._use_bias,
"strides": self._strides,
"kernel_initializer": self._kernel_initializer,
"bias_initializer": self._bias_initializer,
"l2_regularization": self._l2_regularization,
"use_bn": self._use_bn,
"use_sync_bn": self._use_sync_bn,
"norm_moment": self._norm_moment,
"norm_epsilon": self._norm_epsilon,
"activation": self._conv_activation,
"leaky_alpha": self._leaky_alpha,
"sc_activation": self._sc_activation,
}
layer_config.update(super().get_config())
return layer_config
from ._DarkConv import DarkConv
from ._DarkResidual import DarkResidual
from ._DarkTiny import DarkTiny
from ._CSPConnect import CSPConnect
from ._CSPDownSample import CSPDownSample
from ._CSPTiny import CSPTiny
import tensorflow as tf
import tensorflow.keras as ks
import numpy as np
from absl.testing import parameterized
from official.vision.beta.projects.yolo.modeling.building_blocks import CSPDownSample as layer
from official.vision.beta.projects.yolo.modeling.building_blocks import CSPConnect as layer_companion
class CSPConnect(tf.test.TestCase, parameterized.TestCase):
@parameterized.named_parameters(("same", 224, 224, 64, 1),
("downsample", 224, 224, 64, 2))
def test_pass_through(self, width, height, filters, mod):
x = ks.Input(shape=(width, height, filters))
test_layer = layer(filters=filters, filter_reduce=mod)
test_layer2 = layer_companion(filters=filters, filter_reduce=mod)
outx, px = test_layer(x)
outx = test_layer2([outx, px])
print(outx)
print(outx.shape.as_list())
self.assertAllEqual(
outx.shape.as_list(),
[None, np.ceil(width // 2),
np.ceil(height // 2), (filters)])
return
@parameterized.named_parameters(("same", 224, 224, 64, 1),
("downsample", 224, 224, 128, 2))
def test_gradient_pass_though(self, filters, width, height, mod):
loss = ks.losses.MeanSquaredError()
optimizer = ks.optimizers.SGD()
test_layer = layer(filters, filter_reduce=mod)
path_layer = layer_companion(filters, filter_reduce=mod)
init = tf.random_normal_initializer()
x = tf.Variable(initial_value=init(shape=(1, width, height, filters),
dtype=tf.float32))
y = tf.Variable(initial_value=init(shape=(1, int(np.ceil(width // 2)),
int(np.ceil(height // 2)),
filters),
dtype=tf.float32))
with tf.GradientTape() as tape:
x_hat, x_prev = test_layer(x)
x_hat = path_layer([x_hat, x_prev])
grad_loss = loss(x_hat, y)
grad = tape.gradient(grad_loss, test_layer.trainable_variables)
optimizer.apply_gradients(zip(grad, test_layer.trainable_variables))
self.assertNotIn(None, grad)
return
if __name__ == "__main__":
tf.test.main()
import tensorflow as tf
import tensorflow.keras as ks
import numpy as np
from absl.testing import parameterized
from official.vision.beta.projects.yolo.modeling.building_blocks import CSPDownSample as layer
from official.vision.beta.projects.yolo.modeling.building_blocks import CSPConnect as layer_companion
class CSPDownSample(tf.test.TestCase, parameterized.TestCase):
@parameterized.named_parameters(("same", 224, 224, 64, 1),
("downsample", 224, 224, 64, 2))
def test_pass_through(self, width, height, filters, mod):
x = ks.Input(shape=(width, height, filters))
test_layer = layer(filters=filters, filter_reduce=mod)
outx, px = test_layer(x)
print(outx)
print(outx.shape.as_list())
self.assertAllEqual(
outx.shape.as_list(),
[None,
np.ceil(width // 2),
np.ceil(height // 2), (filters / mod)])
return
@parameterized.named_parameters(("same", 224, 224, 64, 1),
("downsample", 224, 224, 128, 2))
def test_gradient_pass_though(self, filters, width, height, mod):
loss = ks.losses.MeanSquaredError()
optimizer = ks.optimizers.SGD()
test_layer = layer(filters, filter_reduce=mod)
path_layer = layer_companion(filters, filter_reduce=mod)
init = tf.random_normal_initializer()
x = tf.Variable(initial_value=init(shape=(1, width, height, filters),
dtype=tf.float32))
y = tf.Variable(initial_value=init(shape=(1, int(np.ceil(width // 2)),
int(np.ceil(height // 2)),
filters),
dtype=tf.float32))
with tf.GradientTape() as tape:
x_hat, x_prev = test_layer(x)
x_hat = path_layer([x_hat, x_prev])
grad_loss = loss(x_hat, y)
grad = tape.gradient(grad_loss, test_layer.trainable_variables)
optimizer.apply_gradients(zip(grad, test_layer.trainable_variables))
self.assertNotIn(None, grad)
return
if __name__ == "__main__":
tf.test.main()
import tensorflow as tf
import tensorflow.keras as ks
import tensorflow_datasets as tfds
from absl.testing import parameterized
from official.vision.beta.projects.yolo.modeling.building_blocks import DarkConv
class DarkConvTest(tf.test.TestCase, parameterized.TestCase):
@parameterized.named_parameters(("valid", (3, 3), "valid", (1, 1)),
("same", (3, 3), "same", (1, 1)),
("downsample", (3, 3), "same", (2, 2)),
("test", (1, 1), "valid", (1, 1)))
def test_pass_through(self, kernel_size, padding, strides):
if padding == "same":
pad_const = 1
else:
pad_const = 0
x = ks.Input(shape=(224, 224, 3))
test_layer = DarkConv(filters=64,
kernel_size=kernel_size,
padding=padding,
strides=strides,
trainable=False)
outx = test_layer(x)
print(outx.shape.as_list())
test = [
None,
int((224 - kernel_size[0] + (2 * pad_const)) / strides[0] + 1),
int((224 - kernel_size[1] + (2 * pad_const)) / strides[1] + 1), 64
]
print(test)
self.assertAllEqual(outx.shape.as_list(), test)
return
@parameterized.named_parameters(("filters", 3))
def test_gradient_pass_though(self, filters):
loss = ks.losses.MeanSquaredError()
optimizer = ks.optimizers.SGD()
with tf.device("/CPU:0"):
test_layer = DarkConv(filters, kernel_size=(3, 3), padding="same")
init = tf.random_normal_initializer()
x = tf.Variable(
initial_value=init(shape=(1, 224, 224, 3), dtype=tf.float32))
y = tf.Variable(
initial_value=init(shape=(1, 224, 224, filters), dtype=tf.float32))
with tf.GradientTape() as tape:
x_hat = test_layer(x)
grad_loss = loss(x_hat, y)
grad = tape.gradient(grad_loss, test_layer.trainable_variables)
optimizer.apply_gradients(zip(grad, test_layer.trainable_variables))
self.assertNotIn(None, grad)
return
# @parameterized.named_parameters(("filters", 3), ("filters", 20), ("filters", 512))
# def test_time(self, filters):
# # finish the test for time
# dataset = tfds.load("mnist")
# model = ks.Sequential([
# DarkConv(7, kernel_size=(3,3), strides = (2,2), activation='relu'),
# DarkConv(10, kernel_size=(3,3), strides = (2,2), activation='relu'),
# DarkConv(filters, kernel_size=(3,3), strides = (1,1), activation='relu'),
# DarkConv(9, kernel_size=(3,3), strides = (2,2), activation='relu'),
# ks.layers.GlobalAveragePooling2D(),
# ks.layers.Dense(10, activation='softmax')], name='test')
# return
if __name__ == "__main__":
tf.test.main()
import tensorflow as tf
import tensorflow.keras as ks
import numpy as np
from absl.testing import parameterized
from official.vision.beta.projects.yolo.modeling.building_blocks import DarkResidual as layer
class DarkResidualTest(tf.test.TestCase, parameterized.TestCase):
@parameterized.named_parameters(("same", 224, 224, 64, False),
("downsample", 223, 223, 32, True),
("oddball", 223, 223, 32, False))
def test_pass_through(self, width, height, filters, downsample):
mod = 1
if downsample:
mod = 2
x = ks.Input(shape=(width, height, filters))
test_layer = layer(filters=filters, downsample=downsample)
outx = test_layer(x)
print(outx)
print(outx.shape.as_list())
self.assertAllEqual(
outx.shape.as_list(),
[None, np.ceil(width / mod),
np.ceil(height / mod), filters])
return
@parameterized.named_parameters(("same", 64, 224, 224, False),
("downsample", 32, 223, 223, True),
("oddball", 32, 223, 223, False))
def test_gradient_pass_though(self, filters, width, height, downsample):
loss = ks.losses.MeanSquaredError()
optimizer = ks.optimizers.SGD()
test_layer = layer(filters, downsample=downsample)
if downsample:
mod = 2
else:
mod = 1
init = tf.random_normal_initializer()
x = tf.Variable(initial_value=init(shape=(1, width, height, filters),
dtype=tf.float32))
y = tf.Variable(initial_value=init(shape=(1, int(np.ceil(width / mod)),
int(np.ceil(height / mod)),
filters),
dtype=tf.float32))
with tf.GradientTape() as tape:
x_hat = test_layer(x)
grad_loss = loss(x_hat, y)
grad = tape.gradient(grad_loss, test_layer.trainable_variables)
optimizer.apply_gradients(zip(grad, test_layer.trainable_variables))
self.assertNotIn(None, grad)
return
if __name__ == "__main__":
tf.test.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment