mnist.py 7.78 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#  Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Convolutional Neural Network Estimator for MNIST, built with tf.layers."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import os
22
import sys
23
24

import tensorflow as tf
Asim Shankar's avatar
Asim Shankar committed
25
from tensorflow.examples.tutorials.mnist import input_data
26
27
28
29

parser = argparse.ArgumentParser()

# Basic model parameters.
Asim Shankar's avatar
Asim Shankar committed
30
31
32
33
34
parser.add_argument(
    '--batch_size',
    type=int,
    default=100,
    help='Number of images to process in a batch')
35

Asim Shankar's avatar
Asim Shankar committed
36
37
38
39
40
parser.add_argument(
    '--data_dir',
    type=str,
    default='/tmp/mnist_data',
    help='Path to directory containing the MNIST dataset')
41

Asim Shankar's avatar
Asim Shankar committed
42
43
44
45
46
parser.add_argument(
    '--model_dir',
    type=str,
    default='/tmp/mnist_model',
    help='The directory where the model will be stored.')
47

Asim Shankar's avatar
Asim Shankar committed
48
49
parser.add_argument(
    '--train_epochs', type=int, default=40, help='Number of epochs to train.')
50
51

parser.add_argument(
Asim Shankar's avatar
Asim Shankar committed
52
53
54
    '--data_format',
    type=str,
    default=None,
55
56
    choices=['channels_first', 'channels_last'],
    help='A flag to override the data format used in the model. channels_first '
Asim Shankar's avatar
Asim Shankar committed
57
58
59
60
    'provides a performance boost on GPU but is not always compatible '
    'with CPU. If left unspecified, the data format will be chosen '
    'automatically based on whether TensorFlow was built for CPU or GPU.')

61

Asim Shankar's avatar
Asim Shankar committed
62
63
64
65
def train_dataset(data_dir):
  """Returns a tf.data.Dataset yielding (image, label) pairs for training."""
  data = input_data.read_data_sets(data_dir, one_hot=True).train
  return tf.data.Dataset.from_tensor_slices((data.images, data.labels))
66
67


Asim Shankar's avatar
Asim Shankar committed
68
69
70
71
def eval_dataset(data_dir):
  """Returns a tf.data.Dataset yielding (image, label) pairs for evaluation."""
  data = input_data.read_data_sets(data_dir, one_hot=True).test
  return tf.data.Dataset.from_tensors((data.images, data.labels))
72
73


74
def mnist_model(inputs, mode, data_format):
75
76
77
78
79
80
  """Takes the MNIST inputs and mode and outputs a tensor of logits."""
  # Input Layer
  # Reshape X to 4-D tensor: [batch_size, width, height, channels]
  # MNIST images are 28x28 pixels, and have one color channel
  inputs = tf.reshape(inputs, [-1, 28, 28, 1])

81
  if data_format is None:
82
83
    # When running on GPU, transpose the data from channels_last (NHWC) to
    # channels_first (NCHW) to improve performance.
84
    # See https://www.tensorflow.org/performance/performance_guide#data_formats
Asim Shankar's avatar
Asim Shankar committed
85
86
    data_format = ('channels_first'
                   if tf.test.is_built_with_cuda() else 'channels_last')
87
88

  if data_format == 'channels_first':
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    inputs = tf.transpose(inputs, [0, 3, 1, 2])

  # Convolutional Layer #1
  # Computes 32 features using a 5x5 filter with ReLU activation.
  # Padding is added to preserve width and height.
  # Input Tensor Shape: [batch_size, 28, 28, 1]
  # Output Tensor Shape: [batch_size, 28, 28, 32]
  conv1 = tf.layers.conv2d(
      inputs=inputs,
      filters=32,
      kernel_size=[5, 5],
      padding='same',
      activation=tf.nn.relu,
      data_format=data_format)

  # Pooling Layer #1
  # First max pooling layer with a 2x2 filter and stride of 2
  # Input Tensor Shape: [batch_size, 28, 28, 32]
  # Output Tensor Shape: [batch_size, 14, 14, 32]
Asim Shankar's avatar
Asim Shankar committed
108
109
  pool1 = tf.layers.max_pooling2d(
      inputs=conv1, pool_size=[2, 2], strides=2, data_format=data_format)
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

  # Convolutional Layer #2
  # Computes 64 features using a 5x5 filter.
  # Padding is added to preserve width and height.
  # Input Tensor Shape: [batch_size, 14, 14, 32]
  # Output Tensor Shape: [batch_size, 14, 14, 64]
  conv2 = tf.layers.conv2d(
      inputs=pool1,
      filters=64,
      kernel_size=[5, 5],
      padding='same',
      activation=tf.nn.relu,
      data_format=data_format)

  # Pooling Layer #2
  # Second max pooling layer with a 2x2 filter and stride of 2
  # Input Tensor Shape: [batch_size, 14, 14, 64]
  # Output Tensor Shape: [batch_size, 7, 7, 64]
Asim Shankar's avatar
Asim Shankar committed
128
129
  pool2 = tf.layers.max_pooling2d(
      inputs=conv2, pool_size=[2, 2], strides=2, data_format=data_format)
130
131
132
133
134
135
136
137
138
139

  # Flatten tensor into a batch of vectors
  # Input Tensor Shape: [batch_size, 7, 7, 64]
  # Output Tensor Shape: [batch_size, 7 * 7 * 64]
  pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])

  # Dense Layer
  # Densely connected layer with 1024 neurons
  # Input Tensor Shape: [batch_size, 7 * 7 * 64]
  # Output Tensor Shape: [batch_size, 1024]
Asim Shankar's avatar
Asim Shankar committed
140
  dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)
141
142
143
144
145
146
147
148
149
150
151
152

  # Add dropout operation; 0.6 probability that element will be kept
  dropout = tf.layers.dropout(
      inputs=dense, rate=0.4, training=(mode == tf.estimator.ModeKeys.TRAIN))

  # Logits layer
  # Input Tensor Shape: [batch_size, 1024]
  # Output Tensor Shape: [batch_size, 10]
  logits = tf.layers.dense(inputs=dropout, units=10)
  return logits


153
def mnist_model_fn(features, labels, mode, params):
154
  """Model function for MNIST."""
155
  logits = mnist_model(features, mode, params['data_format'])
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

  predictions = {
      'classes': tf.argmax(input=logits, axis=1),
      'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
  }

  if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

  loss = tf.losses.softmax_cross_entropy(onehot_labels=labels, logits=logits)

  # Configure the training op
  if mode == tf.estimator.ModeKeys.TRAIN:
    optimizer = tf.train.AdamOptimizer(learning_rate=1e-4)
    train_op = optimizer.minimize(loss, tf.train.get_or_create_global_step())
  else:
    train_op = None

  accuracy = tf.metrics.accuracy(
      tf.argmax(labels, axis=1), predictions['classes'])
  metrics = {'accuracy': accuracy}

  # Create a tensor named train_accuracy for logging purposes
  tf.identity(accuracy[1], name='train_accuracy')
  tf.summary.scalar('train_accuracy', accuracy[1])

  return tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=predictions,
      loss=loss,
      train_op=train_op,
      eval_metric_ops=metrics)


def main(unused_argv):
  # Create the Estimator
  mnist_classifier = tf.estimator.Estimator(
Asim Shankar's avatar
Asim Shankar committed
193
194
195
196
197
      model_fn=mnist_model_fn,
      model_dir=FLAGS.model_dir,
      params={
          'data_format': FLAGS.data_format
      })
198

199
  # Set up training hook that logs the training accuracy every 100 steps.
Asim Shankar's avatar
Asim Shankar committed
200
  tensors_to_log = {'train_accuracy': 'train_accuracy'}
201
202
203
  logging_hook = tf.train.LoggingTensorHook(
      tensors=tensors_to_log, every_n_iter=100)

204
  # Train the model
Asim Shankar's avatar
Asim Shankar committed
205
206
207
208
209
210
211
212
213
214
215
  def train_input_fn():
    # When choosing shuffle buffer sizes, larger sizes result in better
    # randomness, while smaller sizes use less memory. MNIST is a small
    # enough dataset that we can easily shuffle the full epoch.
    dataset = train_dataset(FLAGS.data_dir)
    dataset = dataset.shuffle(buffer_size=50000).batch(FLAGS.batch_size).repeat(
        FLAGS.train_epochs)
    (images, labels) = dataset.make_one_shot_iterator().get_next()
    return (images, labels)

  mnist_classifier.train(input_fn=train_input_fn, hooks=[logging_hook])
216
217

  # Evaluate the model and print results
Asim Shankar's avatar
Asim Shankar committed
218
219
220
221
  def eval_input_fn():
    return eval_dataset(FLAGS.data_dir).make_one_shot_iterator().get_next()

  eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
222
  print()
223
  print('Evaluation results:\n\t%s' % eval_results)
224
225
226
227


if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
228
229
  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)