run_squad.py 5.46 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Run BERT on SQuAD 1.1 and SQuAD 2.0 in TF 2.x."""
16

17
18
19
20
21
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
import os
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
23
24
import time

25
26
from absl import app
from absl import flags
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
27
from absl import logging
Le Hou's avatar
Le Hou committed
28
import gin
29
30
import tensorflow as tf

31
from official.nlp.bert import configs as bert_configs
Chen Chen's avatar
Chen Chen committed
32
from official.nlp.bert import run_squad_helper
33
from official.nlp.bert import tokenization
34
from official.nlp.data import squad_lib as squad_lib_wp
35
from official.utils.misc import distribution_utils
36
from official.utils.misc import keras_utils
37

Chen Chen's avatar
Chen Chen committed
38

39
40
41
flags.DEFINE_string('vocab_file', None,
                    'The vocabulary file that the BERT model was trained on.')

Chen Chen's avatar
Chen Chen committed
42
43
# More flags can be found in run_squad_helper.
run_squad_helper.define_common_squad_flags()
44

45
46
47
FLAGS = flags.FLAGS


48
49
50
def train_squad(strategy,
                input_meta_data,
                custom_callbacks=None,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
51
                run_eagerly=False,
52
53
                init_checkpoint=None,
                sub_model_export_name=None):
54
  """Run bert squad training."""
Chen Chen's avatar
Chen Chen committed
55
  bert_config = bert_configs.BertConfig.from_json_file(FLAGS.bert_config_file)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
56
  init_checkpoint = init_checkpoint or FLAGS.init_checkpoint
Chen Chen's avatar
Chen Chen committed
57
  run_squad_helper.train_squad(strategy, input_meta_data, bert_config,
58
59
                               custom_callbacks, run_eagerly, init_checkpoint,
                               sub_model_export_name=sub_model_export_name)
60
61
62


def predict_squad(strategy, input_meta_data):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
63
  """Makes predictions for the squad dataset."""
Chen Chen's avatar
Chen Chen committed
64
65
66
  bert_config = bert_configs.BertConfig.from_json_file(FLAGS.bert_config_file)
  tokenizer = tokenization.FullTokenizer(
      vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
67
68
69
70
71
72
73
74
75
76
77
78
  run_squad_helper.predict_squad(
      strategy, input_meta_data, tokenizer, bert_config, squad_lib_wp)


def eval_squad(strategy, input_meta_data):
  """Evaluate on the squad dataset."""
  bert_config = bert_configs.BertConfig.from_json_file(FLAGS.bert_config_file)
  tokenizer = tokenization.FullTokenizer(
      vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
  eval_metrics = run_squad_helper.eval_squad(
      strategy, input_meta_data, tokenizer, bert_config, squad_lib_wp)
  return eval_metrics
79
80


Hongkun Yu's avatar
Hongkun Yu committed
81
82
83
84
85
86
87
88
89
90
def export_squad(model_export_path, input_meta_data):
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.

  Raises:
    Export path is not specified, got an empty string or None.
  """
Chen Chen's avatar
Chen Chen committed
91
92
  bert_config = bert_configs.BertConfig.from_json_file(FLAGS.bert_config_file)
  run_squad_helper.export_squad(model_export_path, input_meta_data, bert_config)
Hongkun Yu's avatar
Hongkun Yu committed
93
94


95
def main(_):
Le Hou's avatar
Le Hou committed
96
  gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_param)
97

98
99
100
  with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
    input_meta_data = json.loads(reader.read().decode('utf-8'))

Hongkun Yu's avatar
Hongkun Yu committed
101
102
103
104
  if FLAGS.mode == 'export_only':
    export_squad(FLAGS.model_export_path, input_meta_data)
    return

105
106
107
108
  # Configures cluster spec for multi-worker distribution strategy.
  if FLAGS.num_gpus > 0:
    _ = distribution_utils.configure_cluster(FLAGS.worker_hosts,
                                             FLAGS.task_index)
109
110
111
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=FLAGS.distribution_strategy,
      num_gpus=FLAGS.num_gpus,
112
      all_reduce_alg=FLAGS.all_reduce_alg,
113
      tpu_address=FLAGS.tpu)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
114
115

  if 'train' in FLAGS.mode:
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    if FLAGS.log_steps:
      custom_callbacks = [keras_utils.TimeHistory(
          batch_size=FLAGS.train_batch_size,
          log_steps=FLAGS.log_steps,
          logdir=FLAGS.model_dir,
      )]
    else:
      custom_callbacks = None

    train_squad(
        strategy,
        input_meta_data,
        custom_callbacks=custom_callbacks,
        run_eagerly=FLAGS.run_eagerly,
130
        sub_model_export_name=FLAGS.sub_model_export_name,
131
    )
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
132
  if 'predict' in FLAGS.mode:
133
    predict_squad(strategy, input_meta_data)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
134
  if 'eval' in FLAGS.mode:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
135
136
137
    eval_metrics = eval_squad(strategy, input_meta_data)
    f1_score = eval_metrics['final_f1']
    logging.info('SQuAD eval F1-score: %f', f1_score)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
138
139
    summary_dir = os.path.join(FLAGS.model_dir, 'summaries', 'eval')
    summary_writer = tf.summary.create_file_writer(summary_dir)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
140
141
142
143
    with summary_writer.as_default():
      # TODO(lehou): write to the correct step number.
      tf.summary.scalar('F1-score', f1_score, step=0)
      summary_writer.flush()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
144
145
146
    # Also write eval_metrics to json file.
    squad_lib_wp.write_to_json_files(
        eval_metrics, os.path.join(summary_dir, 'eval_metrics.json'))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
147
    time.sleep(60)
148
149
150
151
152
153


if __name__ == '__main__':
  flags.mark_flag_as_required('bert_config_file')
  flags.mark_flag_as_required('model_dir')
  app.run(main)