run_squad.py 5.35 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Run BERT on SQuAD 1.1 and SQuAD 2.0 in TF 2.x."""
16

17
18
19
20
21
22
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
23
24
import os
import tempfile
25
26
from absl import app
from absl import flags
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
27
from absl import logging
28
29
import tensorflow as tf

30
from official.nlp.bert import configs as bert_configs
Chen Chen's avatar
Chen Chen committed
31
from official.nlp.bert import run_squad_helper
32
from official.nlp.bert import tokenization
33
from official.nlp.data import squad_lib as squad_lib_wp
34
from official.utils.misc import distribution_utils
35
from official.utils.misc import keras_utils
36

Chen Chen's avatar
Chen Chen committed
37

38
39
40
flags.DEFINE_string('vocab_file', None,
                    'The vocabulary file that the BERT model was trained on.')

Chen Chen's avatar
Chen Chen committed
41
42
# More flags can be found in run_squad_helper.
run_squad_helper.define_common_squad_flags()
43

44
45
46
FLAGS = flags.FLAGS


47
48
49
50
def train_squad(strategy,
                input_meta_data,
                custom_callbacks=None,
                run_eagerly=False):
51
  """Run bert squad training."""
Chen Chen's avatar
Chen Chen committed
52
53
54
  bert_config = bert_configs.BertConfig.from_json_file(FLAGS.bert_config_file)
  run_squad_helper.train_squad(strategy, input_meta_data, bert_config,
                               custom_callbacks, run_eagerly)
55
56
57


def predict_squad(strategy, input_meta_data):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
58
  """Makes predictions for the squad dataset."""
Chen Chen's avatar
Chen Chen committed
59
60
61
  bert_config = bert_configs.BertConfig.from_json_file(FLAGS.bert_config_file)
  tokenizer = tokenization.FullTokenizer(
      vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
62
63
64
65
66
67
68
69
70
71
72
73
  run_squad_helper.predict_squad(
      strategy, input_meta_data, tokenizer, bert_config, squad_lib_wp)


def eval_squad(strategy, input_meta_data):
  """Evaluate on the squad dataset."""
  bert_config = bert_configs.BertConfig.from_json_file(FLAGS.bert_config_file)
  tokenizer = tokenization.FullTokenizer(
      vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
  eval_metrics = run_squad_helper.eval_squad(
      strategy, input_meta_data, tokenizer, bert_config, squad_lib_wp)
  return eval_metrics
74
75


Hongkun Yu's avatar
Hongkun Yu committed
76
77
78
79
80
81
82
83
84
85
def export_squad(model_export_path, input_meta_data):
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.

  Raises:
    Export path is not specified, got an empty string or None.
  """
Chen Chen's avatar
Chen Chen committed
86
87
  bert_config = bert_configs.BertConfig.from_json_file(FLAGS.bert_config_file)
  run_squad_helper.export_squad(model_export_path, input_meta_data, bert_config)
Hongkun Yu's avatar
Hongkun Yu committed
88
89


90
91
def main(_):
  # Users should always run this script under TF 2.x
92

93
94
95
  with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
    input_meta_data = json.loads(reader.read().decode('utf-8'))

Hongkun Yu's avatar
Hongkun Yu committed
96
97
98
99
  if FLAGS.mode == 'export_only':
    export_squad(FLAGS.model_export_path, input_meta_data)
    return

100
101
102
103
  # Configures cluster spec for multi-worker distribution strategy.
  if FLAGS.num_gpus > 0:
    _ = distribution_utils.configure_cluster(FLAGS.worker_hosts,
                                             FLAGS.task_index)
104
105
106
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=FLAGS.distribution_strategy,
      num_gpus=FLAGS.num_gpus,
107
      all_reduce_alg=FLAGS.all_reduce_alg,
108
      tpu_address=FLAGS.tpu)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
109
110

  if 'train' in FLAGS.mode:
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    if FLAGS.log_steps:
      custom_callbacks = [keras_utils.TimeHistory(
          batch_size=FLAGS.train_batch_size,
          log_steps=FLAGS.log_steps,
          logdir=FLAGS.model_dir,
      )]
    else:
      custom_callbacks = None

    train_squad(
        strategy,
        input_meta_data,
        custom_callbacks=custom_callbacks,
        run_eagerly=FLAGS.run_eagerly,
    )
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
126
  if 'predict' in FLAGS.mode:
127
    predict_squad(strategy, input_meta_data)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
  if 'eval' in FLAGS.mode:
    if input_meta_data.get('version_2_with_negative', False):
      logging.error('SQuAD v2 eval is not supported. '
                    'Falling back to predict mode.')
      predict_squad(strategy, input_meta_data)
    else:
      eval_metrics = eval_squad(strategy, input_meta_data)
      f1_score = eval_metrics['f1']
      logging.info('SQuAD eval F1-score: %f', f1_score)
      if (not strategy) or strategy.extended.should_save_summary:
        summary_dir = os.path.join(FLAGS.model_dir, 'summaries')
      else:
        summary_dir = tempfile.mkdtemp()
      summary_writer = tf.summary.create_file_writer(
          os.path.join(summary_dir, 'eval'))
      with summary_writer.as_default():
        # TODO(lehou): write to the correct step number.
        tf.summary.scalar('F1-score', f1_score, step=0)
        summary_writer.flush()
147
148
149
150
151
152


if __name__ == '__main__':
  flags.mark_flag_as_required('bert_config_file')
  flags.mark_flag_as_required('model_dir')
  app.run(main)