README.md 13.2 KB
Newer Older
1
# BERT (Bidirectional Encoder Representations from Transformers)
2
3
4
5

The academic paper which describes BERT in detail and provides full results on a
number of tasks can be found here: https://arxiv.org/abs/1810.04805.

6
This repository contains TensorFlow 2.x implementation for BERT.
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

## Contents
  * [Contents](#contents)
  * [Pre-trained Models](#pre-trained-models)
    * [Restoring from Checkpoints](#restoring-from-checkpoints)
  * [Set Up](#set-up)
  * [Process Datasets](#process-datasets)
  * [Fine-tuning with BERT](#fine-tuning-with-bert)
    * [Cloud GPUs and TPUs](#cloud-gpus-and-tpus)
    * [Sentence and Sentence-pair Classification Tasks](#sentence-and-sentence-pair-classification-tasks)
    * [SQuAD 1.1](#squad-1.1)


## Pre-trained Models

22
23
24
25
26
27
We released both checkpoints and tf.hub modules as the pretrained models for
fine-tuning. They are TF 2.x compatible and are converted from the checkpoints
released in TF 1.x official BERT repository
[google-research/bert](https://github.com/google-research/bert)
in order to keep consistent with BERT paper.

28

Hongkun Yu's avatar
Hongkun Yu committed
29
30
### Access to Pretrained Checkpoints

31
Pretrained checkpoints can be found in the following links:
Hongkun Yu's avatar
Hongkun Yu committed
32

33
34
35
**Note: We have switched BERT implementation
to use Keras functional-style networks in [nlp/modeling](../modeling).
The new checkpoints are:**
Hongkun Yu's avatar
Hongkun Yu committed
36

37
*   **[`BERT-Large, Uncased (Whole Word Masking)`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/wwm_uncased_L-24_H-1024_A-16.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
38
    24-layer, 1024-hidden, 16-heads, 340M parameters
39
*   **[`BERT-Large, Cased (Whole Word Masking)`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/wwm_cased_L-24_H-1024_A-16.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
40
    24-layer, 1024-hidden, 16-heads, 340M parameters
41
*   **[`BERT-Base, Uncased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/uncased_L-12_H-768_A-12.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
42
    12-layer, 768-hidden, 12-heads, 110M parameters
43
*   **[`BERT-Large, Uncased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
44
    24-layer, 1024-hidden, 16-heads, 340M parameters
45
*   **[`BERT-Base, Cased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/cased_L-12_H-768_A-12.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
46
    12-layer, 768-hidden, 12-heads , 110M parameters
47
*   **[`BERT-Large, Cased`](https://storage.googleapis.com/cloud-tpu-checkpoints/bert/keras_bert/cased_L-24_H-1024_A-16.tar.gz)**:
Hongkun Yu's avatar
Hongkun Yu committed
48
49
    24-layer, 1024-hidden, 16-heads, 340M parameters

Hongkun Yu's avatar
Hongkun Yu committed
50
51
We recommend to host checkpoints on Google Cloud storage buckets when you use
Cloud GPU/TPU.
Hongkun Yu's avatar
Hongkun Yu committed
52

53
54
### Restoring from Checkpoints

55
`tf.train.Checkpoint` is used to manage model checkpoints in TF 2. To restore
56
57
58
59
60
61
62
63
64
65
66
67
weights from provided pre-trained checkpoints, you can use the following code:

```python
init_checkpoint='the pretrained model checkpoint path.'
model=tf.keras.Model() # Bert pre-trained model as feature extractor.
checkpoint = tf.train.Checkpoint(model=model)
checkpoint.restore(init_checkpoint)
```

Checkpoints featuring native serialized Keras models
(i.e. model.load()/load_weights()) will be available soon.

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
### Access to Pretrained hub modules.

Pretrained tf.hub modules in TF 2.x SavedModel format can be found in the
following links:

*   **[`BERT-Large, Uncased (Whole Word Masking)`](https://tfhub.dev/tensorflow/bert_en_wwm_uncased_L-24_H-1024_A-16/1)**:
    24-layer, 1024-hidden, 16-heads, 340M parameters
*   **[`BERT-Large, Cased (Whole Word Masking)`](https://tfhub.dev/tensorflow/bert_en_wwm_cased_L-24_H-1024_A-16/1)**:
    24-layer, 1024-hidden, 16-heads, 340M parameters
*   **[`BERT-Base, Uncased`](https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/1)**:
    12-layer, 768-hidden, 12-heads, 110M parameters
*   **[`BERT-Large, Uncased`](https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/1)**:
    24-layer, 1024-hidden, 16-heads, 340M parameters
*   **[`BERT-Base, Cased`](https://tfhub.dev/tensorflow/bert_en_cased_L-12_H-768_A-12/1)**:
    12-layer, 768-hidden, 12-heads , 110M parameters
*   **[`BERT-Large, Cased`](https://tfhub.dev/tensorflow/bert_en_cased_L-24_H-1024_A-16/1)**:
    24-layer, 1024-hidden, 16-heads, 340M parameters
*   **[`BERT-Base, Multilingual Cased`](https://tfhub.dev/tensorflow/bert_multi_cased_L-12_H-768_A-12/1)**:
    104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
*   **[`BERT-Base, Chinese`](https://tfhub.dev/tensorflow/bert_zh_L-12_H-768_A-12/1)**:
    Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads,
    110M parameters

91
92
93
94
95
96
97
98
99
## Set Up

```shell
export PYTHONPATH="$PYTHONPATH:/path/to/models"
```

Install `tf-nightly` to get latest updates:

```shell
100
pip install tf-nightly-gpu
101
102
```

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
103
104
With TPU, GPU support is not necessary. First, you need to create a `tf-nightly`
TPU with [ctpu tool](https://github.com/tensorflow/tpu/tree/master/tools/ctpu):
105
106
107
108
109

```shell
ctpu up -name <instance name> --tf-version=”nightly”
```

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
110
Second, you need to install TF 2 `tf-nightly` on your VM:
111
112

```shell
113
pip install tf-nightly
114
115
```

Hongkun Yu's avatar
Hongkun Yu committed
116
Warning: More details TPU-specific set-up instructions and tutorial should come
117
118
along with official TF 2.x release for TPU. Note that this repo is not
officially supported by Google Cloud TPU team yet until TF 2.1 released.
119
120
121

## Process Datasets

122
### Pre-training
123
124

There is no change to generate pre-training data. Please use the script
125
[`../data/create_pretraining_data.py`](../data/create_pretraining_data.py)
Hongkun Yu's avatar
Hongkun Yu committed
126
127
128
which is essentially branched from [BERT research repo](https://github.com/google-research/bert)
to get processed pre-training data and it adapts to TF2 symbols and python3
compatibility.
129

130
131
132
133

### Fine-tuning

To prepare the fine-tuning data for final model training, use the
134
135
136
137
[`../data/create_finetuning_data.py`](../data/create_finetuning_data.py) script.
Resulting datasets in `tf_record` format and training meta data should be later
passed to training or evaluation scripts. The task-specific arguments are
described in following sections:
138

139
140
141
142
143
144
145
146
147
* GLUE

Users can download the
[GLUE data](https://gluebenchmark.com/tasks) by running
[this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
and unpack it to some directory `$GLUE_DIR`.

```shell
export GLUE_DIR=~/glue
148
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
149
150
151

export TASK_NAME=MNLI
export OUTPUT_DIR=gs://some_bucket/datasets
152
python ../data/create_finetuning_data.py \
153
 --input_data_dir=${GLUE_DIR}/${TASK_NAME}/ \
154
 --vocab_file=${BERT_DIR}/vocab.txt \
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
 --train_data_output_path=${OUTPUT_DIR}/${TASK_NAME}_train.tf_record \
 --eval_data_output_path=${OUTPUT_DIR}/${TASK_NAME}_eval.tf_record \
 --meta_data_file_path=${OUTPUT_DIR}/${TASK_NAME}_meta_data \
 --fine_tuning_task_type=classification --max_seq_length=128 \
 --classification_task_name=${TASK_NAME}
```

* SQUAD

The [SQuAD website](https://rajpurkar.github.io/SQuAD-explorer/) contains
detailed information about the SQuAD datasets and evaluation.

The necessary files can be found here:

*   [train-v1.1.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json)
*   [dev-v1.1.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json)
*   [evaluate-v1.1.py](https://github.com/allenai/bi-att-flow/blob/master/squad/evaluate-v1.1.py)
*   [train-v2.0.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json)
*   [dev-v2.0.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json)
*   [evaluate-v2.0.py](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/)

```shell
export SQUAD_DIR=~/squad
export SQUAD_VERSION=v1.1
179
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
180
181
export OUTPUT_DIR=gs://some_bucket/datasets

182
python ../data/create_finetuning_data.py \
183
 --squad_data_file=${SQUAD_DIR}/train-${SQUAD_VERSION}.json \
184
 --vocab_file=${BERT_DIR}/vocab.txt \
185
186
187
188
189
190
191
192
193
194
195
196
 --train_data_output_path=${OUTPUT_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
 --meta_data_file_path=${OUTPUT_DIR}/squad_${SQUAD_VERSION}_meta_data \
 --fine_tuning_task_type=squad --max_seq_length=384
```

## Fine-tuning with BERT

### Cloud GPUs and TPUs

* Cloud Storage

The unzipped pre-trained model files can also be found in the Google Cloud
197
Storage folder `gs://cloud-tpu-checkpoints/bert/keras_bert`. For example:
198
199

```shell
200
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
201
202
203
204
205
206
207
208
209
210
211
export MODEL_DIR=gs://some_bucket/my_output_dir
```

Currently, users are able to access to `tf-nightly` TPUs and the following TPU
script should run with `tf-nightly`.

* GPU -> TPU

Just add the following flags to `run_classifier.py` or `run_squad.py`:

```shell
212
  --distribution_strategy=tpu
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
  --tpu=grpc://${TPU_IP_ADDRESS}:8470
```

### Sentence and Sentence-pair Classification Tasks

This example code fine-tunes `BERT-Large` on the Microsoft Research Paraphrase
Corpus (MRPC) corpus, which only contains 3,600 examples and can fine-tune in a
few minutes on most GPUs.

We use the `BERT-Large` (uncased_L-24_H-1024_A-16) as an example throughout the
workflow.
For GPU memory of 16GB or smaller, you may try to use `BERT-Base`
(uncased_L-12_H-768_A-12).

```shell
228
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
229
230
231
232
233
234
235
236
237
export MODEL_DIR=gs://some_bucket/my_output_dir
export GLUE_DIR=gs://some_bucket/datasets
export TASK=MRPC

python run_classifier.py \
  --mode='train_and_eval' \
  --input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \
  --train_data_path=${GLUE_DIR}/${TASK}_train.tf_record \
  --eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \
238
239
  --bert_config_file=${BERT_DIR}/bert_config.json \
  --init_checkpoint=${BERT_DIR}/bert_model.ckpt \
240
241
242
243
244
245
  --train_batch_size=4 \
  --eval_batch_size=4 \
  --steps_per_loop=1 \
  --learning_rate=2e-5 \
  --num_train_epochs=3 \
  --model_dir=${MODEL_DIR} \
246
  --distribution_strategy=mirrored
247
248
```

249
250
251
252
Alternatively, instead of specifying `init_checkpoint`, you can specify
`hub_module_url` to employ a pretraind BERT hub module, e.g.,
` --hub_module_url=https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/1`.

253
254
255
256
To use TPU, you only need to switch distribution strategy type to `tpu` with TPU
information and use remote storage for model checkpoints.

```shell
257
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
258
259
260
export TPU_IP_ADDRESS='???'
export MODEL_DIR=gs://some_bucket/my_output_dir
export GLUE_DIR=gs://some_bucket/datasets
261
export TASK=MRPC
262
263
264
265
266
267

python run_classifier.py \
  --mode='train_and_eval' \
  --input_meta_data_path=${GLUE_DIR}/${TASK}_meta_data \
  --train_data_path=${GLUE_DIR}/${TASK}_train.tf_record \
  --eval_data_path=${GLUE_DIR}/${TASK}_eval.tf_record \
268
269
  --bert_config_file=${BERT_DIR}/bert_config.json \
  --init_checkpoint=${BERT_DIR}/bert_model.ckpt \
270
271
  --train_batch_size=32 \
  --eval_batch_size=32 \
Hongkun Yu's avatar
Hongkun Yu committed
272
  --steps_per_loop=1000 \
273
274
275
  --learning_rate=2e-5 \
  --num_train_epochs=3 \
  --model_dir=${MODEL_DIR} \
276
  --distribution_strategy=tpu \
277
278
279
  --tpu=grpc://${TPU_IP_ADDRESS}:8470
```

Hongkun Yu's avatar
Hongkun Yu committed
280
281
282
283
Note that, we specify `steps_per_loop=1000` for TPU, because running a loop of
training steps inside a `tf.function` can significantly increase TPU utilization
and callbacks will not be called inside the loop.

284
285
286
287
288
289
290
291
292
293
294
### SQuAD 1.1

The Stanford Question Answering Dataset (SQuAD) is a popular question answering
benchmark dataset. See more in [SQuAD website](https://rajpurkar.github.io/SQuAD-explorer/).

We use the `BERT-Large` (uncased_L-24_H-1024_A-16) as an example throughout the
workflow.
For GPU memory of 16GB or smaller, you may try to use `BERT-Base`
(uncased_L-12_H-768_A-12).

```shell
295
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
296
297
298
299
300
301
302
303
export SQUAD_DIR=gs://some_bucket/datasets
export MODEL_DIR=gs://some_bucket/my_output_dir
export SQUAD_VERSION=v1.1

python run_squad.py \
  --input_meta_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_meta_data \
  --train_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
  --predict_file=${SQUAD_DIR}/dev-v1.1.json \
304
305
306
  --vocab_file=${BERT_DIR}/vocab.txt \
  --bert_config_file=${BERT_DIR}/bert_config.json \
  --init_checkpoint=${BERT_DIR}/bert_model.ckpt \
307
308
309
310
311
  --train_batch_size=4 \
  --predict_batch_size=4 \
  --learning_rate=8e-5 \
  --num_train_epochs=2 \
  --model_dir=${MODEL_DIR} \
312
  --distribution_strategy=mirrored
313
314
```

315
316
317
Similarily, you can replace `init_checkpoint` FLAG with `hub_module_url` to
specify a hub module path.

318
319
320
321
To use TPU, you need switch distribution strategy type to `tpu` with TPU
information.

```shell
322
export BERT_DIR=gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16
323
324
325
326
327
328
329
330
331
export TPU_IP_ADDRESS='???'
export MODEL_DIR=gs://some_bucket/my_output_dir
export SQUAD_DIR=gs://some_bucket/datasets
export SQUAD_VERSION=v1.1

python run_squad.py \
  --input_meta_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_meta_data \
  --train_data_path=${SQUAD_DIR}/squad_${SQUAD_VERSION}_train.tf_record \
  --predict_file=${SQUAD_DIR}/dev-v1.1.json \
332
333
334
  --vocab_file=${BERT_DIR}/vocab.txt \
  --bert_config_file=${BERT_DIR}/bert_config.json \
  --init_checkpoint=${BERT_DIR}/bert_model.ckpt \
335
336
337
338
  --train_batch_size=32 \
  --learning_rate=8e-5 \
  --num_train_epochs=2 \
  --model_dir=${MODEL_DIR} \
339
  --distribution_strategy=tpu \
340
341
342
343
344
345
346
347
348
349
  --tpu=grpc://${TPU_IP_ADDRESS}:8470
```

The dev set predictions will be saved into a file called predictions.json in the
model_dir:

```shell
python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json ./squad/predictions.json
```

350