run_classifier.py 15 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""BERT classification finetuning runner in TF 2.x."""
16
17
18
19
20
21
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import math
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
import os
23
24
25
26
27
28

from absl import app
from absl import flags
from absl import logging
import tensorflow as tf

29
from official.modeling import model_training_utils
30
from official.modeling import performance
31
from official.nlp import optimization
32
from official.nlp.bert import bert_models
33
from official.nlp.bert import common_flags
34
from official.nlp.bert import configs as bert_configs
35
36
from official.nlp.bert import input_pipeline
from official.nlp.bert import model_saving_utils
37
from official.utils.misc import distribution_utils
38
from official.utils.misc import keras_utils
39

40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
flags.DEFINE_enum(
    'mode', 'train_and_eval', ['train_and_eval', 'export_only'],
    'One of {"train_and_eval", "export_only"}. `train_and_eval`: '
    'trains the model and evaluates in the meantime. '
    '`export_only`: will take the latest checkpoint inside '
    'model_dir and export a `SavedModel`.')
flags.DEFINE_string('train_data_path', None,
                    'Path to training data for BERT classifier.')
flags.DEFINE_string('eval_data_path', None,
                    'Path to evaluation data for BERT classifier.')
# Model training specific flags.
flags.DEFINE_string(
    'input_meta_data_path', None,
    'Path to file that contains meta data about input '
    'to be used for training and evaluation.')
flags.DEFINE_integer('train_batch_size', 32, 'Batch size for training.')
57
flags.DEFINE_integer('eval_batch_size', 32, 'Batch size for evaluation.')
58
59

common_flags.define_common_bert_flags()
60
61
62
63

FLAGS = flags.FLAGS


64
def get_loss_fn(num_classes):
65
66
67
68
69
70
71
72
73
74
  """Gets the classification loss function."""

  def classification_loss_fn(labels, logits):
    """Classification loss."""
    labels = tf.squeeze(labels)
    log_probs = tf.nn.log_softmax(logits, axis=-1)
    one_hot_labels = tf.one_hot(
        tf.cast(labels, dtype=tf.int32), depth=num_classes, dtype=tf.float32)
    per_example_loss = -tf.reduce_sum(
        tf.cast(one_hot_labels, dtype=tf.float32) * log_probs, axis=-1)
75
    return tf.reduce_mean(per_example_loss)
76
77
78
79

  return classification_loss_fn


Hongkun Yu's avatar
Hongkun Yu committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def get_dataset_fn(input_file_pattern, max_seq_length, global_batch_size,
                   is_training):
  """Gets a closure to create a dataset."""

  def _dataset_fn(ctx=None):
    """Returns tf.data.Dataset for distributed BERT pretraining."""
    batch_size = ctx.get_per_replica_batch_size(
        global_batch_size) if ctx else global_batch_size
    dataset = input_pipeline.create_classifier_dataset(
        input_file_pattern,
        max_seq_length,
        batch_size,
        is_training=is_training,
        input_pipeline_context=ctx)
    return dataset

  return _dataset_fn


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
99
100
101
102
103
104
105
106
107
108
109
def run_bert_classifier(strategy,
                        bert_config,
                        input_meta_data,
                        model_dir,
                        epochs,
                        steps_per_epoch,
                        steps_per_loop,
                        eval_steps,
                        warmup_steps,
                        initial_lr,
                        init_checkpoint,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
110
111
                        train_input_fn,
                        eval_input_fn,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
112
                        custom_callbacks=None,
113
114
                        run_eagerly=False,
                        use_keras_compile_fit=False):
115
116
117
118
119
  """Run BERT classifier training using low-level API."""
  max_seq_length = input_meta_data['max_seq_length']
  num_classes = input_meta_data['num_labels']

  def _get_classifier_model():
120
    """Gets a classifier model."""
121
    classifier_model, core_model = (
122
123
124
125
        bert_models.classifier_model(
            bert_config,
            num_classes,
            max_seq_length,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
126
127
            hub_module_url=FLAGS.hub_module_url,
            hub_module_trainable=FLAGS.hub_module_trainable))
128
    optimizer = optimization.create_optimizer(
129
        initial_lr, steps_per_epoch * epochs, warmup_steps)
130
131
132
133
    classifier_model.optimizer = performance.configure_optimizer(
        optimizer,
        use_float16=common_flags.use_float16(),
        use_graph_rewrite=common_flags.use_graph_rewrite())
134
135
    return classifier_model, core_model

136
  loss_fn = get_loss_fn(num_classes)
137
138
139
140
141
142
143

  # Defines evaluation metrics function, which will create metrics in the
  # correct device and strategy scope.
  def metric_fn():
    return tf.keras.metrics.SparseCategoricalAccuracy(
        'test_accuracy', dtype=tf.float32)

144
  if use_keras_compile_fit:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
145
146
    # Start training using Keras compile/fit API.
    logging.info('Training using TF 2.0 Keras compile/fit API with '
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
147
                 'distribution strategy.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
148
149
150
151
152
153
154
155
156
157
158
159
    return run_keras_compile_fit(
        model_dir,
        strategy,
        _get_classifier_model,
        train_input_fn,
        eval_input_fn,
        loss_fn,
        metric_fn,
        init_checkpoint,
        epochs,
        steps_per_epoch,
        eval_steps,
160
        custom_callbacks=custom_callbacks)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
161
162
163

  # Use user-defined loop to start training.
  logging.info('Training using customized training loop TF 2.0 with '
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
164
               'distribution strategy.')
165
166
167
168
169
170
  return model_training_utils.run_customized_training_loop(
      strategy=strategy,
      model_fn=_get_classifier_model,
      loss_fn=loss_fn,
      model_dir=model_dir,
      steps_per_epoch=steps_per_epoch,
171
      steps_per_loop=steps_per_loop,
172
173
174
175
176
177
      epochs=epochs,
      train_input_fn=train_input_fn,
      eval_input_fn=eval_input_fn,
      eval_steps=eval_steps,
      init_checkpoint=init_checkpoint,
      metric_fn=metric_fn,
178
179
      custom_callbacks=custom_callbacks,
      run_eagerly=run_eagerly)
180
181


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
def run_keras_compile_fit(model_dir,
                          strategy,
                          model_fn,
                          train_input_fn,
                          eval_input_fn,
                          loss_fn,
                          metric_fn,
                          init_checkpoint,
                          epochs,
                          steps_per_epoch,
                          eval_steps,
                          custom_callbacks=None):
  """Runs BERT classifier model using Keras compile/fit API."""

  with strategy.scope():
    training_dataset = train_input_fn()
    evaluation_dataset = eval_input_fn()
    bert_model, sub_model = model_fn()
    optimizer = bert_model.optimizer

    if init_checkpoint:
      checkpoint = tf.train.Checkpoint(model=sub_model)
      checkpoint.restore(init_checkpoint).assert_existing_objects_matched()

    bert_model.compile(optimizer=optimizer, loss=loss_fn, metrics=[metric_fn()])

208
209
210
211
212
    summary_dir = os.path.join(model_dir, 'summaries')
    summary_callback = tf.keras.callbacks.TensorBoard(summary_dir)
    checkpoint_path = os.path.join(model_dir, 'checkpoint')
    checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
        checkpoint_path, save_weights_only=True)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

    if custom_callbacks is not None:
      custom_callbacks += [summary_callback, checkpoint_callback]
    else:
      custom_callbacks = [summary_callback, checkpoint_callback]

    bert_model.fit(
        x=training_dataset,
        validation_data=evaluation_dataset,
        steps_per_epoch=steps_per_epoch,
        epochs=epochs,
        validation_steps=eval_steps,
        callbacks=custom_callbacks)

    return bert_model


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
def get_predictions_and_labels(strategy, trained_model, eval_input_fn,
                               eval_steps):
  """Obtains predictions of trained model on evaluation data.

  Note that list of labels is returned along with the predictions because the
  order changes on distributing dataset over TPU pods.

  Args:
    strategy: Distribution strategy.
    trained_model: Trained model with preloaded weights.
    eval_input_fn: Input function for evaluation data.
    eval_steps: Number of evaluation steps.

  Returns:
    predictions: List of predictions.
    labels: List of gold labels corresponding to predictions.
  """

  @tf.function
  def test_step(iterator):
    """Computes predictions on distributed devices."""

    def _test_step_fn(inputs):
      """Replicated predictions."""
      inputs, labels = inputs
      model_outputs = trained_model(inputs, training=False)
      return model_outputs, labels

Ken Franko's avatar
Ken Franko committed
258
    outputs, labels = strategy.run(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        _test_step_fn, args=(next(iterator),))
    # outputs: current batch logits as a tuple of shard logits
    outputs = tf.nest.map_structure(strategy.experimental_local_results,
                                    outputs)
    labels = tf.nest.map_structure(strategy.experimental_local_results, labels)
    return outputs, labels

  def _run_evaluation(test_iterator):
    """Runs evaluation steps."""
    preds, golds = list(), list()
    for _ in range(eval_steps):
      logits, labels = test_step(test_iterator)
      for cur_logits, cur_labels in zip(logits, labels):
        preds.extend(tf.math.argmax(cur_logits, axis=1).numpy())
        golds.extend(cur_labels.numpy().tolist())
    return preds, golds

  test_iter = iter(
      strategy.experimental_distribute_datasets_from_function(eval_input_fn))
  predictions, labels = _run_evaluation(test_iter)

  return predictions, labels


283
def export_classifier(model_export_path, input_meta_data,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
284
                      restore_model_using_load_weights, bert_config, model_dir):
285
286
287
288
289
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.
290
    restore_model_using_load_weights: Whether to use checkpoint.restore() API
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
291
292
293
294
295
296
297
      for custom checkpoint or to use model.load_weights() API. There are 2
      different ways to save checkpoints. One is using tf.train.Checkpoint and
      another is using Keras model.save_weights(). Custom training loop
      implementation uses tf.train.Checkpoint API and Keras ModelCheckpoint
      callback internally uses model.save_weights() API. Since these two API's
      cannot be used together, model loading logic must be take into account how
      model checkpoint was saved.
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
298
299
300
    bert_config: Bert configuration file to define core bert layers.
    model_dir: The directory where the model weights and training/evaluation
      summaries are stored.
301
302
303
304
305
306

  Raises:
    Export path is not specified, got an empty string or None.
  """
  if not model_export_path:
    raise ValueError('Export path is not specified: %s' % model_export_path)
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
307
308
  if not model_dir:
    raise ValueError('Export path is not specified: %s' % model_dir)
309

Zongwei Zhou's avatar
Zongwei Zhou committed
310
311
  # Export uses float32 for now, even if training uses mixed precision.
  tf.keras.mixed_precision.experimental.set_policy('float32')
312
  classifier_model = bert_models.classifier_model(
Zongwei Zhou's avatar
Zongwei Zhou committed
313
      bert_config, input_meta_data['num_labels'],
314
      input_meta_data['max_seq_length'])[0]
315

316
  model_saving_utils.export_bert_model(
317
318
      model_export_path,
      model=classifier_model,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
319
      checkpoint_dir=model_dir,
320
      restore_model_using_load_weights=restore_model_using_load_weights)
321
322


Hongkun Yu's avatar
Hongkun Yu committed
323
324
def run_bert(strategy,
             input_meta_data,
325
             model_config,
Hongkun Yu's avatar
Hongkun Yu committed
326
327
             train_input_fn=None,
             eval_input_fn=None):
328
329
  """Run BERT training."""
  if FLAGS.mode == 'export_only':
330
331
332
333
    # As Keras ModelCheckpoint callback used with Keras compile/fit() API
    # internally uses model.save_weights() to save checkpoints, we must
    # use model.load_weights() when Keras compile/fit() is used.
    export_classifier(FLAGS.model_export_path, input_meta_data,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
334
                      FLAGS.use_keras_compile_fit,
335
                      model_config, FLAGS.model_dir)
336
337
338
339
    return

  if FLAGS.mode != 'train_and_eval':
    raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode)
340
341
  # Enables XLA in Session Config. Should not be set for TPU.
  keras_utils.set_config_v2(FLAGS.enable_xla)
342
  performance.set_mixed_precision_policy(common_flags.dtype())
343
344
345
346
347
348
349
350
351
352

  epochs = FLAGS.num_train_epochs
  train_data_size = input_meta_data['train_data_size']
  steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
  warmup_steps = int(epochs * train_data_size * 0.1 / FLAGS.train_batch_size)
  eval_steps = int(
      math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))

  if not strategy:
    raise ValueError('Distribution strategy has not been specified.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
353

354
355
356
357
358
359
360
361
362
  if FLAGS.log_steps:
    custom_callbacks = [keras_utils.TimeHistory(
        batch_size=FLAGS.train_batch_size,
        log_steps=FLAGS.log_steps,
        logdir=FLAGS.model_dir,
    )]
  else:
    custom_callbacks = None

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
363
  trained_model = run_bert_classifier(
364
      strategy,
365
      model_config,
366
367
368
369
      input_meta_data,
      FLAGS.model_dir,
      epochs,
      steps_per_epoch,
370
      FLAGS.steps_per_loop,
371
372
373
374
      eval_steps,
      warmup_steps,
      FLAGS.learning_rate,
      FLAGS.init_checkpoint,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
375
376
      train_input_fn,
      eval_input_fn,
377
      run_eagerly=FLAGS.run_eagerly,
378
379
      use_keras_compile_fit=FLAGS.use_keras_compile_fit,
      custom_callbacks=custom_callbacks)
380

381
  if FLAGS.model_export_path:
382
383
384
    # As Keras ModelCheckpoint callback used with Keras compile/fit() API
    # internally uses model.save_weights() to save checkpoints, we must
    # use model.load_weights() when Keras compile/fit() is used.
385
    model_saving_utils.export_bert_model(
386
387
388
        FLAGS.model_export_path,
        model=trained_model,
        restore_model_using_load_weights=FLAGS.use_keras_compile_fit)
389
390
  return trained_model

391
392
393

def main(_):
  # Users should always run this script under TF 2.x
394

395
396
397
398
399
400
  with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
    input_meta_data = json.loads(reader.read().decode('utf-8'))

  if not FLAGS.model_dir:
    FLAGS.model_dir = '/tmp/bert20/'

401
402
403
404
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=FLAGS.distribution_strategy,
      num_gpus=FLAGS.num_gpus,
      tpu_address=FLAGS.tpu)
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
405
  max_seq_length = input_meta_data['max_seq_length']
Hongkun Yu's avatar
Hongkun Yu committed
406
  train_input_fn = get_dataset_fn(
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
407
      FLAGS.train_data_path,
Hongkun Yu's avatar
Hongkun Yu committed
408
409
410
411
      max_seq_length,
      FLAGS.train_batch_size,
      is_training=True)
  eval_input_fn = get_dataset_fn(
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
412
      FLAGS.eval_data_path,
Hongkun Yu's avatar
Hongkun Yu committed
413
414
415
416
      max_seq_length,
      FLAGS.eval_batch_size,
      is_training=False)

417
418
419
  bert_config = bert_configs.BertConfig.from_json_file(FLAGS.bert_config_file)
  run_bert(strategy, input_meta_data, bert_config, train_input_fn,
           eval_input_fn)
420
421
422
423
424


if __name__ == '__main__':
  flags.mark_flag_as_required('bert_config_file')
  flags.mark_flag_as_required('input_meta_data_path')
425
  flags.mark_flag_as_required('model_dir')
426
  app.run(main)