detection.py 15 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""DETR detection task definition."""
16
from typing import Optional
Frederick Liu's avatar
Frederick Liu committed
17

Gunho Park's avatar
Gunho Park committed
18
from absl import logging
Frederick Liu's avatar
Frederick Liu committed
19
20
import tensorflow as tf

Gunho Park's avatar
Gunho Park committed
21
from official.common import dataset_fn
Frederick Liu's avatar
Frederick Liu committed
22
23
24
25
from official.core import base_task
from official.core import task_factory
from official.projects.detr.configs import detr as detr_cfg
from official.projects.detr.dataloaders import coco
26
from official.projects.detr.dataloaders import detr_input
Frederick Liu's avatar
Frederick Liu committed
27
28
from official.projects.detr.modeling import detr
from official.projects.detr.ops import matchers
Gunho Park's avatar
Gunho Park committed
29
30
31
32
from official.vision.dataloaders import input_reader_factory
from official.vision.dataloaders import tf_example_decoder
from official.vision.dataloaders import tfds_factory
from official.vision.dataloaders import tf_example_label_map_decoder
Yeqing Li's avatar
Yeqing Li committed
33
from official.vision.evaluation import coco_evaluator
Gunho Park's avatar
Gunho Park committed
34
from official.vision.modeling import backbones
Yeqing Li's avatar
Yeqing Li committed
35
from official.vision.ops import box_ops
Frederick Liu's avatar
Frederick Liu committed
36
37


Gunho Park's avatar
Gunho Park committed
38
@task_factory.register_task_cls(detr_cfg.DetrTask)
Frederick Liu's avatar
Frederick Liu committed
39
40
41
42
43
44
45
46
47
48
class DectectionTask(base_task.Task):
  """A single-replica view of training procedure.

  DETR task provides artifacts for training/evalution procedures, including
  loading/iterating over Datasets, initializing the model, calculating the loss,
  post-processing, and customized metrics with reduction.
  """

  def build_model(self):
    """Build DETR model."""
Gunho Park's avatar
Gunho Park committed
49

50
51
    input_specs = tf.keras.layers.InputSpec(shape=[None] +
                                            self._task_config.model.input_size)
Gunho Park's avatar
Gunho Park committed
52
53
54
55
56

    backbone = backbones.factory.build_backbone(
        input_specs=input_specs,
        backbone_config=self._task_config.model.backbone,
        norm_activation_config=self._task_config.model.norm_activation)
Frederick Liu's avatar
Frederick Liu committed
57

58
59
60
61
62
    model = detr.DETR(backbone, self._task_config.model.num_queries,
                      self._task_config.model.hidden_size,
                      self._task_config.model.num_classes,
                      self._task_config.model.num_encoder_layers,
                      self._task_config.model.num_decoder_layers)
Frederick Liu's avatar
Frederick Liu committed
63
64
65
66
    return model

  def initialize(self, model: tf.keras.Model):
    """Loading pretrained checkpoint."""
Gunho Park's avatar
Gunho Park committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    if not self._task_config.init_checkpoint:
      return

    ckpt_dir_or_file = self._task_config.init_checkpoint

    # Restoring checkpoint.
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)

    if self._task_config.init_checkpoint_modules == 'all':
      ckpt = tf.train.Checkpoint(**model.checkpoint_items)
      status = ckpt.restore(ckpt_dir_or_file)
      status.assert_consumed()
    elif self._task_config.init_checkpoint_modules == 'backbone':
      ckpt = tf.train.Checkpoint(backbone=model.backbone)
      status = ckpt.restore(ckpt_dir_or_file)
      status.expect_partial().assert_existing_objects_matched()

    logging.info('Finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)

  def build_inputs(self,
                   params,
                   input_context: Optional[tf.distribute.InputContext] = None):
Frederick Liu's avatar
Frederick Liu committed
91
    """Build input dataset."""
92
    if isinstance(params, coco.COCODataConfig):
Gunho Park's avatar
Gunho Park committed
93
      dataset = coco.COCODataLoader(params).load(input_context)
Gunho Park's avatar
Gunho Park committed
94
    else:
Gunho Park's avatar
Gunho Park committed
95
96
      if params.tfds_name:
        decoder = tfds_factory.get_detection_decoder(params.tfds_name)
Gunho Park's avatar
Gunho Park committed
97
      else:
Gunho Park's avatar
Gunho Park committed
98
99
100
101
102
103
104
105
106
107
108
        decoder_cfg = params.decoder.get()
        if params.decoder.type == 'simple_decoder':
          decoder = tf_example_decoder.TfExampleDecoder(
              regenerate_source_id=decoder_cfg.regenerate_source_id)
        elif params.decoder.type == 'label_map_decoder':
          decoder = tf_example_label_map_decoder.TfExampleDecoderLabelMap(
              label_map=decoder_cfg.label_map,
              regenerate_source_id=decoder_cfg.regenerate_source_id)
        else:
          raise ValueError('Unknown decoder type: {}!'.format(
              params.decoder.type))
109

Gunho Park's avatar
Gunho Park committed
110
111
112
113
114
115
116
117
118
119
120
      parser = detr_input.Parser(
          class_offset=self._task_config.losses.class_offset,
          output_size=self._task_config.model.input_size[:2],
      )

      reader = input_reader_factory.input_reader_generator(
          params,
          dataset_fn=dataset_fn.pick_dataset_fn(params.file_type),
          decoder_fn=decoder.decode,
          parser_fn=parser.parse_fn(params.is_training))
      dataset = reader.read(input_context=input_context)
Gunho Park's avatar
Gunho Park committed
121
122

    return dataset
Frederick Liu's avatar
Frederick Liu committed
123
124
125
126
127

  def _compute_cost(self, cls_outputs, box_outputs, cls_targets, box_targets):
    # Approximate classification cost with 1 - prob[target class].
    # The 1 is a constant that doesn't change the matching, it can be ommitted.
    # background: 0
Gunho Park's avatar
Gunho Park committed
128
    cls_cost = self._task_config.losses.lambda_cls * tf.gather(
Frederick Liu's avatar
Frederick Liu committed
129
130
131
        -tf.nn.softmax(cls_outputs), cls_targets, batch_dims=1, axis=-1)

    # Compute the L1 cost between boxes,
Gunho Park's avatar
Gunho Park committed
132
    paired_differences = self._task_config.losses.lambda_box * tf.abs(
Frederick Liu's avatar
Frederick Liu committed
133
134
135
136
        tf.expand_dims(box_outputs, 2) - tf.expand_dims(box_targets, 1))
    box_cost = tf.reduce_sum(paired_differences, axis=-1)

    # Compute the giou cost betwen boxes
Gunho Park's avatar
Gunho Park committed
137
    giou_cost = self._task_config.losses.lambda_giou * -box_ops.bbox_generalized_overlap(
Frederick Liu's avatar
Frederick Liu committed
138
139
140
141
142
143
        box_ops.cycxhw_to_yxyx(box_outputs),
        box_ops.cycxhw_to_yxyx(box_targets))

    total_cost = cls_cost + box_cost + giou_cost

    max_cost = (
144
145
        self._task_config.losses.lambda_cls * 0.0 +
        self._task_config.losses.lambda_box * 4. +
Gunho Park's avatar
Gunho Park committed
146
        self._task_config.losses.lambda_giou * 0.0)
Frederick Liu's avatar
Frederick Liu committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

    # Set pads to large constant
    valid = tf.expand_dims(
        tf.cast(tf.not_equal(cls_targets, 0), dtype=total_cost.dtype), axis=1)
    total_cost = (1 - valid) * max_cost + valid * total_cost

    # Set inf of nan to large constant
    total_cost = tf.where(
        tf.logical_or(tf.math.is_nan(total_cost), tf.math.is_inf(total_cost)),
        max_cost * tf.ones_like(total_cost, dtype=total_cost.dtype),
        total_cost)

    return total_cost

  def build_losses(self, outputs, labels, aux_losses=None):
    """Build DETR losses."""
    cls_outputs = outputs['cls_outputs']
    box_outputs = outputs['box_outputs']
    cls_targets = labels['classes']
    box_targets = labels['boxes']

    cost = self._compute_cost(
        cls_outputs, box_outputs, cls_targets, box_targets)

    _, indices = matchers.hungarian_matching(cost)
    indices = tf.stop_gradient(indices)

    target_index = tf.math.argmax(indices, axis=1)
    cls_assigned = tf.gather(cls_outputs, target_index, batch_dims=1, axis=1)
    box_assigned = tf.gather(box_outputs, target_index, batch_dims=1, axis=1)

    background = tf.equal(cls_targets, 0)
    num_boxes = tf.reduce_sum(
        tf.cast(tf.logical_not(background), tf.float32), axis=-1)

    # Down-weight background to account for class imbalance.
    xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
        labels=cls_targets, logits=cls_assigned)
Gunho Park's avatar
Gunho Park committed
185
    cls_loss = self._task_config.losses.lambda_cls * tf.where(
186
187
        background, self._task_config.losses.background_cls_weight * xentropy,
        xentropy)
Frederick Liu's avatar
Frederick Liu committed
188
189
    cls_weights = tf.where(
        background,
Gunho Park's avatar
Gunho Park committed
190
        self._task_config.losses.background_cls_weight * tf.ones_like(cls_loss),
191
        tf.ones_like(cls_loss))
Frederick Liu's avatar
Frederick Liu committed
192
193
194

    # Box loss is only calculated on non-background class.
    l_1 = tf.reduce_sum(tf.abs(box_assigned - box_targets), axis=-1)
Gunho Park's avatar
Gunho Park committed
195
    box_loss = self._task_config.losses.lambda_box * tf.where(
196
        background, tf.zeros_like(l_1), l_1)
Frederick Liu's avatar
Frederick Liu committed
197
198
199
200
201
202

    # Giou loss is only calculated on non-background class.
    giou = tf.linalg.diag_part(1.0 - box_ops.bbox_generalized_overlap(
        box_ops.cycxhw_to_yxyx(box_assigned),
        box_ops.cycxhw_to_yxyx(box_targets)
        ))
Gunho Park's avatar
Gunho Park committed
203
    giou_loss = self._task_config.losses.lambda_giou * tf.where(
204
        background, tf.zeros_like(giou), giou)
Frederick Liu's avatar
Frederick Liu committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

    # Consider doing all reduce once in train_step to speed up.
    num_boxes_per_replica = tf.reduce_sum(num_boxes)
    cls_weights_per_replica = tf.reduce_sum(cls_weights)
    replica_context = tf.distribute.get_replica_context()
    num_boxes_sum, cls_weights_sum = replica_context.all_reduce(
        tf.distribute.ReduceOp.SUM,
        [num_boxes_per_replica, cls_weights_per_replica])
    cls_loss = tf.math.divide_no_nan(
        tf.reduce_sum(cls_loss), cls_weights_sum)
    box_loss = tf.math.divide_no_nan(
        tf.reduce_sum(box_loss), num_boxes_sum)
    giou_loss = tf.math.divide_no_nan(
        tf.reduce_sum(giou_loss), num_boxes_sum)

    aux_losses = tf.add_n(aux_losses) if aux_losses else 0.0
Gunho Park's avatar
Gunho Park committed
221

Frederick Liu's avatar
Frederick Liu committed
222
223
224
225
226
227
228
229
230
231
232
233
    total_loss = cls_loss + box_loss + giou_loss + aux_losses
    return total_loss, cls_loss, box_loss, giou_loss

  def build_metrics(self, training=True):
    """Build detection metrics."""
    metrics = []
    metric_names = ['cls_loss', 'box_loss', 'giou_loss']
    for name in metric_names:
      metrics.append(tf.keras.metrics.Mean(name, dtype=tf.float32))

    if not training:
      self.coco_metric = coco_evaluator.COCOEvaluator(
Gunho Park's avatar
Gunho Park committed
234
          annotation_file=self._task_config.annotation_file,
Frederick Liu's avatar
Frederick Liu committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
          include_mask=False,
          need_rescale_bboxes=True,
          per_category_metrics=self._task_config.per_category_metrics)
    return metrics

  def train_step(self, inputs, model, optimizer, metrics=None):
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs
    with tf.GradientTape() as tape:
      outputs = model(features, training=True)

      loss = 0.0
      cls_loss = 0.0
      box_loss = 0.0
      giou_loss = 0.0

      for output in outputs:
        # Computes per-replica loss.
        layer_loss, layer_cls_loss, layer_box_loss, layer_giou_loss = self.build_losses(
            outputs=output, labels=labels, aux_losses=model.losses)
        loss += layer_loss
        cls_loss += layer_cls_loss
        box_loss += layer_box_loss
        giou_loss += layer_giou_loss

      # Consider moving scaling logic from build_losses to here.
      scaled_loss = loss
      # For mixed_precision policy, when LossScaleOptimizer is used, loss is
      # scaled for numerical stability.
      if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    # Scales back gradient when LossScaleOptimizer is used.
    if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
      grads = optimizer.get_unscaled_gradients(grads)
    optimizer.apply_gradients(list(zip(grads, tvars)))

    # Multiply for logging.
    # Since we expect the gradient replica sum to happen in the optimizer,
    # the loss is scaled with global num_boxes and weights.
    # To have it more interpretable/comparable we scale it back when logging.
    num_replicas_in_sync = tf.distribute.get_strategy().num_replicas_in_sync
    loss *= num_replicas_in_sync
    cls_loss *= num_replicas_in_sync
    box_loss *= num_replicas_in_sync
    giou_loss *= num_replicas_in_sync

    # Trainer class handles loss metric for you.
    logs = {self.loss: loss}

    all_losses = {
        'cls_loss': cls_loss,
        'box_loss': box_loss,
        'giou_loss': giou_loss,
    }

    # Metric results will be added to logs for you.
    if metrics:
      for m in metrics:
        m.update_state(all_losses[m.name])
    return logs

  def validation_step(self, inputs, model, metrics=None):
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs

    outputs = model(features, training=False)[-1]
    loss, cls_loss, box_loss, giou_loss = self.build_losses(
        outputs=outputs, labels=labels, aux_losses=model.losses)

    # Multiply for logging.
    # Since we expect the gradient replica sum to happen in the optimizer,
    # the loss is scaled with global num_boxes and weights.
    # To have it more interpretable/comparable we scale it back when logging.
    num_replicas_in_sync = tf.distribute.get_strategy().num_replicas_in_sync
    loss *= num_replicas_in_sync
    cls_loss *= num_replicas_in_sync
    box_loss *= num_replicas_in_sync
    giou_loss *= num_replicas_in_sync

    # Evaluator class handles loss metric for you.
    logs = {self.loss: loss}

    predictions = {
        'detection_boxes':
                box_ops.cycxhw_to_yxyx(outputs['box_outputs'])
                * tf.expand_dims(
                    tf.concat([
                        labels['image_info'][:, 1:2, 0],
                        labels['image_info'][:, 1:2, 1],
                        labels['image_info'][:, 1:2, 0],
                        labels['image_info'][:, 1:2, 1]
                    ],
                              axis=1),
                    axis=1),
        'detection_scores':
            tf.math.reduce_max(
                tf.nn.softmax(outputs['cls_outputs'])[:, :, 1:], axis=-1),
        'detection_classes':
            tf.math.argmax(outputs['cls_outputs'][:, :, 1:], axis=-1) + 1,
        # Fix this. It's not being used at the moment.
        'num_detections': tf.reduce_sum(
            tf.cast(
                tf.math.greater(tf.math.reduce_max(
                    outputs['cls_outputs'], axis=-1), 0), tf.int32), axis=-1),
        'source_id': labels['id'],
        'image_info': labels['image_info']
    }
    ground_truths = {
        'source_id': labels['id'],
        'height': labels['image_info'][:, 0:1, 0],
        'width': labels['image_info'][:, 0:1, 1],
        'num_detections': tf.reduce_sum(
            tf.cast(tf.math.greater(labels['classes'], 0), tf.int32), axis=-1),
        'boxes': labels['gt_boxes'],
        'classes': labels['classes'],
        'is_crowds': labels['is_crowd']
    }
    logs.update({'predictions': predictions,
                 'ground_truths': ground_truths})

    all_losses = {
        'cls_loss': cls_loss,
        'box_loss': box_loss,
        'giou_loss': giou_loss,
    }

    # Metric results will be added to logs for you.
    if metrics:
      for m in metrics:
        m.update_state(all_losses[m.name])
    return logs

  def aggregate_logs(self, state=None, step_outputs=None):
    if state is None:
      self.coco_metric.reset_states()
      state = self.coco_metric

    state.update_state(
        step_outputs['ground_truths'],
        step_outputs['predictions'])
    return state

  def reduce_aggregated_logs(self, aggregated_logs, global_step=None):
    return aggregated_logs.result()