detection.py 12.2 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""DETR detection task definition."""

import tensorflow as tf

from official.core import base_task
from official.core import task_factory
from official.projects.detr.configs import detr as detr_cfg
from official.projects.detr.dataloaders import coco
from official.projects.detr.modeling import detr
from official.projects.detr.ops import matchers
Yeqing Li's avatar
Yeqing Li committed
25
26
from official.vision.evaluation import coco_evaluator
from official.vision.ops import box_ops
Frederick Liu's avatar
Frederick Liu committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341


@task_factory.register_task_cls(detr_cfg.DetectionConfig)
class DectectionTask(base_task.Task):
  """A single-replica view of training procedure.

  DETR task provides artifacts for training/evalution procedures, including
  loading/iterating over Datasets, initializing the model, calculating the loss,
  post-processing, and customized metrics with reduction.
  """

  def build_model(self):
    """Build DETR model."""
    model = detr.DETR(
        self._task_config.num_queries,
        self._task_config.num_hidden,
        self._task_config.num_classes,
        self._task_config.num_encoder_layers,
        self._task_config.num_decoder_layers)
    return model

  def initialize(self, model: tf.keras.Model):
    """Loading pretrained checkpoint."""
    ckpt = tf.train.Checkpoint(backbone=model.backbone)
    status = ckpt.read(self._task_config.init_ckpt)
    status.expect_partial().assert_existing_objects_matched()

  def build_inputs(self, params, input_context=None):
    """Build input dataset."""
    return coco.COCODataLoader(params).load(input_context)

  def _compute_cost(self, cls_outputs, box_outputs, cls_targets, box_targets):
    # Approximate classification cost with 1 - prob[target class].
    # The 1 is a constant that doesn't change the matching, it can be ommitted.
    # background: 0
    cls_cost = self._task_config.lambda_cls * tf.gather(
        -tf.nn.softmax(cls_outputs), cls_targets, batch_dims=1, axis=-1)

    # Compute the L1 cost between boxes,
    paired_differences = self._task_config.lambda_box * tf.abs(
        tf.expand_dims(box_outputs, 2) - tf.expand_dims(box_targets, 1))
    box_cost = tf.reduce_sum(paired_differences, axis=-1)

    # Compute the giou cost betwen boxes
    giou_cost = self._task_config.lambda_giou * -box_ops.bbox_generalized_overlap(
        box_ops.cycxhw_to_yxyx(box_outputs),
        box_ops.cycxhw_to_yxyx(box_targets))

    total_cost = cls_cost + box_cost + giou_cost

    max_cost = (
        self._task_config.lambda_cls * 0.0 + self._task_config.lambda_box * 4. +
        self._task_config.lambda_giou * 0.0)

    # Set pads to large constant
    valid = tf.expand_dims(
        tf.cast(tf.not_equal(cls_targets, 0), dtype=total_cost.dtype), axis=1)
    total_cost = (1 - valid) * max_cost + valid * total_cost

    # Set inf of nan to large constant
    total_cost = tf.where(
        tf.logical_or(tf.math.is_nan(total_cost), tf.math.is_inf(total_cost)),
        max_cost * tf.ones_like(total_cost, dtype=total_cost.dtype),
        total_cost)

    return total_cost

  def build_losses(self, outputs, labels, aux_losses=None):
    """Build DETR losses."""
    cls_outputs = outputs['cls_outputs']
    box_outputs = outputs['box_outputs']
    cls_targets = labels['classes']
    box_targets = labels['boxes']

    cost = self._compute_cost(
        cls_outputs, box_outputs, cls_targets, box_targets)

    _, indices = matchers.hungarian_matching(cost)
    indices = tf.stop_gradient(indices)

    target_index = tf.math.argmax(indices, axis=1)
    cls_assigned = tf.gather(cls_outputs, target_index, batch_dims=1, axis=1)
    box_assigned = tf.gather(box_outputs, target_index, batch_dims=1, axis=1)

    background = tf.equal(cls_targets, 0)
    num_boxes = tf.reduce_sum(
        tf.cast(tf.logical_not(background), tf.float32), axis=-1)

    # Down-weight background to account for class imbalance.
    xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
        labels=cls_targets, logits=cls_assigned)
    cls_loss = self._task_config.lambda_cls * tf.where(
        background,
        self._task_config.background_cls_weight * xentropy,
        xentropy
        )
    cls_weights = tf.where(
        background,
        self._task_config.background_cls_weight * tf.ones_like(cls_loss),
        tf.ones_like(cls_loss)
        )

    # Box loss is only calculated on non-background class.
    l_1 = tf.reduce_sum(tf.abs(box_assigned - box_targets), axis=-1)
    box_loss = self._task_config.lambda_box * tf.where(
        background,
        tf.zeros_like(l_1),
        l_1
        )

    # Giou loss is only calculated on non-background class.
    giou = tf.linalg.diag_part(1.0 - box_ops.bbox_generalized_overlap(
        box_ops.cycxhw_to_yxyx(box_assigned),
        box_ops.cycxhw_to_yxyx(box_targets)
        ))
    giou_loss = self._task_config.lambda_giou * tf.where(
        background,
        tf.zeros_like(giou),
        giou
        )

    # Consider doing all reduce once in train_step to speed up.
    num_boxes_per_replica = tf.reduce_sum(num_boxes)
    cls_weights_per_replica = tf.reduce_sum(cls_weights)
    replica_context = tf.distribute.get_replica_context()
    num_boxes_sum, cls_weights_sum = replica_context.all_reduce(
        tf.distribute.ReduceOp.SUM,
        [num_boxes_per_replica, cls_weights_per_replica])
    cls_loss = tf.math.divide_no_nan(
        tf.reduce_sum(cls_loss), cls_weights_sum)
    box_loss = tf.math.divide_no_nan(
        tf.reduce_sum(box_loss), num_boxes_sum)
    giou_loss = tf.math.divide_no_nan(
        tf.reduce_sum(giou_loss), num_boxes_sum)

    aux_losses = tf.add_n(aux_losses) if aux_losses else 0.0
    total_loss = cls_loss + box_loss + giou_loss + aux_losses
    return total_loss, cls_loss, box_loss, giou_loss

  def build_metrics(self, training=True):
    """Build detection metrics."""
    metrics = []
    metric_names = ['cls_loss', 'box_loss', 'giou_loss']
    for name in metric_names:
      metrics.append(tf.keras.metrics.Mean(name, dtype=tf.float32))

    if not training:
      self.coco_metric = coco_evaluator.COCOEvaluator(
          annotation_file='',
          include_mask=False,
          need_rescale_bboxes=True,
          per_category_metrics=self._task_config.per_category_metrics)
    return metrics

  def train_step(self, inputs, model, optimizer, metrics=None):
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs
    with tf.GradientTape() as tape:
      outputs = model(features, training=True)

      loss = 0.0
      cls_loss = 0.0
      box_loss = 0.0
      giou_loss = 0.0

      for output in outputs:
        # Computes per-replica loss.
        layer_loss, layer_cls_loss, layer_box_loss, layer_giou_loss = self.build_losses(
            outputs=output, labels=labels, aux_losses=model.losses)
        loss += layer_loss
        cls_loss += layer_cls_loss
        box_loss += layer_box_loss
        giou_loss += layer_giou_loss

      # Consider moving scaling logic from build_losses to here.
      scaled_loss = loss
      # For mixed_precision policy, when LossScaleOptimizer is used, loss is
      # scaled for numerical stability.
      if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    # Scales back gradient when LossScaleOptimizer is used.
    if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
      grads = optimizer.get_unscaled_gradients(grads)
    optimizer.apply_gradients(list(zip(grads, tvars)))

    # Multiply for logging.
    # Since we expect the gradient replica sum to happen in the optimizer,
    # the loss is scaled with global num_boxes and weights.
    # To have it more interpretable/comparable we scale it back when logging.
    num_replicas_in_sync = tf.distribute.get_strategy().num_replicas_in_sync
    loss *= num_replicas_in_sync
    cls_loss *= num_replicas_in_sync
    box_loss *= num_replicas_in_sync
    giou_loss *= num_replicas_in_sync

    # Trainer class handles loss metric for you.
    logs = {self.loss: loss}

    all_losses = {
        'cls_loss': cls_loss,
        'box_loss': box_loss,
        'giou_loss': giou_loss,
    }

    # Metric results will be added to logs for you.
    if metrics:
      for m in metrics:
        m.update_state(all_losses[m.name])
    return logs

  def validation_step(self, inputs, model, metrics=None):
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs

    outputs = model(features, training=False)[-1]
    loss, cls_loss, box_loss, giou_loss = self.build_losses(
        outputs=outputs, labels=labels, aux_losses=model.losses)

    # Multiply for logging.
    # Since we expect the gradient replica sum to happen in the optimizer,
    # the loss is scaled with global num_boxes and weights.
    # To have it more interpretable/comparable we scale it back when logging.
    num_replicas_in_sync = tf.distribute.get_strategy().num_replicas_in_sync
    loss *= num_replicas_in_sync
    cls_loss *= num_replicas_in_sync
    box_loss *= num_replicas_in_sync
    giou_loss *= num_replicas_in_sync

    # Evaluator class handles loss metric for you.
    logs = {self.loss: loss}

    predictions = {
        'detection_boxes':
                box_ops.cycxhw_to_yxyx(outputs['box_outputs'])
                * tf.expand_dims(
                    tf.concat([
                        labels['image_info'][:, 1:2, 0],
                        labels['image_info'][:, 1:2, 1],
                        labels['image_info'][:, 1:2, 0],
                        labels['image_info'][:, 1:2, 1]
                    ],
                              axis=1),
                    axis=1),
        'detection_scores':
            tf.math.reduce_max(
                tf.nn.softmax(outputs['cls_outputs'])[:, :, 1:], axis=-1),
        'detection_classes':
            tf.math.argmax(outputs['cls_outputs'][:, :, 1:], axis=-1) + 1,
        # Fix this. It's not being used at the moment.
        'num_detections': tf.reduce_sum(
            tf.cast(
                tf.math.greater(tf.math.reduce_max(
                    outputs['cls_outputs'], axis=-1), 0), tf.int32), axis=-1),
        'source_id': labels['id'],
        'image_info': labels['image_info']
    }
    ground_truths = {
        'source_id': labels['id'],
        'height': labels['image_info'][:, 0:1, 0],
        'width': labels['image_info'][:, 0:1, 1],
        'num_detections': tf.reduce_sum(
            tf.cast(tf.math.greater(labels['classes'], 0), tf.int32), axis=-1),
        'boxes': labels['gt_boxes'],
        'classes': labels['classes'],
        'is_crowds': labels['is_crowd']
    }
    logs.update({'predictions': predictions,
                 'ground_truths': ground_truths})

    all_losses = {
        'cls_loss': cls_loss,
        'box_loss': box_loss,
        'giou_loss': giou_loss,
    }

    # Metric results will be added to logs for you.
    if metrics:
      for m in metrics:
        m.update_state(all_losses[m.name])
    return logs

  def aggregate_logs(self, state=None, step_outputs=None):
    if state is None:
      self.coco_metric.reset_states()
      state = self.coco_metric

    state.update_state(
        step_outputs['ground_truths'],
        step_outputs['predictions'])
    return state

  def reduce_aggregated_logs(self, aggregated_logs, global_step=None):
    return aggregated_logs.result()