encoders.py 3.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
16
17
18
19
"""Transformer Encoders.

Includes configurations and instantiation methods.
"""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
20
from typing import Optional
21
import dataclasses
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
import tensorflow as tf
23

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
24
from official.modeling import tf_utils
25
from official.modeling.hyperparams import base_config
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26
from official.nlp.modeling import layers
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
27
from official.nlp.modeling import networks
28
29
30
31
32
33
34
35
36
37


@dataclasses.dataclass
class TransformerEncoderConfig(base_config.Config):
  """BERT encoder configuration."""
  vocab_size: int = 30522
  hidden_size: int = 768
  num_layers: int = 12
  num_attention_heads: int = 12
  hidden_activation: str = "gelu"
Chen Chen's avatar
Chen Chen committed
38
  intermediate_size: int = 3072
39
40
41
42
43
  dropout_rate: float = 0.1
  attention_dropout_rate: float = 0.1
  max_position_embeddings: int = 512
  type_vocab_size: int = 2
  initializer_range: float = 0.02
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
44
  embedding_size: Optional[int] = None
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
45
46


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
47
48
49
50
def instantiate_encoder_from_cfg(
    config: TransformerEncoderConfig,
    encoder_cls=networks.TransformerEncoder,
    embedding_layer: Optional[layers.OnDeviceEmbedding] = None):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
51
  """Instantiate a Transformer encoder network from TransformerEncoderConfig."""
Hongkun Yu's avatar
Hongkun Yu committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
  if encoder_cls.__name__ == "EncoderScaffold":
    embedding_cfg = dict(
        vocab_size=config.vocab_size,
        type_vocab_size=config.type_vocab_size,
        hidden_size=config.hidden_size,
        seq_length=None,
        max_seq_length=config.max_position_embeddings,
        initializer=tf.keras.initializers.TruncatedNormal(
            stddev=config.initializer_range),
        dropout_rate=config.dropout_rate,
    )
    hidden_cfg = dict(
        num_attention_heads=config.num_attention_heads,
        intermediate_size=config.intermediate_size,
        intermediate_activation=tf_utils.get_activation(
            config.hidden_activation),
        dropout_rate=config.dropout_rate,
        attention_dropout_rate=config.attention_dropout_rate,
        kernel_initializer=tf.keras.initializers.TruncatedNormal(
            stddev=config.initializer_range),
    )
    kwargs = dict(
        embedding_cfg=embedding_cfg,
        hidden_cfg=hidden_cfg,
        num_hidden_instances=config.num_layers,
        pooled_output_dim=config.hidden_size,
        pooler_layer_initializer=tf.keras.initializers.TruncatedNormal(
            stddev=config.initializer_range))
    return encoder_cls(**kwargs)

  if encoder_cls.__name__ != "TransformerEncoder":
    raise ValueError("Unknown encoder network class. %s" % str(encoder_cls))
  encoder_network = encoder_cls(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
85
86
87
88
89
90
91
92
      vocab_size=config.vocab_size,
      hidden_size=config.hidden_size,
      num_layers=config.num_layers,
      num_attention_heads=config.num_attention_heads,
      intermediate_size=config.intermediate_size,
      activation=tf_utils.get_activation(config.hidden_activation),
      dropout_rate=config.dropout_rate,
      attention_dropout_rate=config.attention_dropout_rate,
Chen Chen's avatar
Chen Chen committed
93
      sequence_length=None,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
94
95
96
      max_sequence_length=config.max_position_embeddings,
      type_vocab_size=config.type_vocab_size,
      initializer=tf.keras.initializers.TruncatedNormal(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
97
98
99
          stddev=config.initializer_range),
      embedding_width=config.embedding_size,
      embedding_layer=embedding_layer)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
100
  return encoder_network