# Lint as: python3 # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Transformer Encoders. Includes configurations and instantiation methods. """ from typing import Optional import dataclasses import tensorflow as tf from official.modeling import tf_utils from official.modeling.hyperparams import base_config from official.nlp.modeling import layers from official.nlp.modeling import networks @dataclasses.dataclass class TransformerEncoderConfig(base_config.Config): """BERT encoder configuration.""" vocab_size: int = 30522 hidden_size: int = 768 num_layers: int = 12 num_attention_heads: int = 12 hidden_activation: str = "gelu" intermediate_size: int = 3072 dropout_rate: float = 0.1 attention_dropout_rate: float = 0.1 max_position_embeddings: int = 512 type_vocab_size: int = 2 initializer_range: float = 0.02 embedding_size: Optional[int] = None def instantiate_encoder_from_cfg( config: TransformerEncoderConfig, encoder_cls=networks.TransformerEncoder, embedding_layer: Optional[layers.OnDeviceEmbedding] = None): """Instantiate a Transformer encoder network from TransformerEncoderConfig.""" if encoder_cls.__name__ == "EncoderScaffold": embedding_cfg = dict( vocab_size=config.vocab_size, type_vocab_size=config.type_vocab_size, hidden_size=config.hidden_size, seq_length=None, max_seq_length=config.max_position_embeddings, initializer=tf.keras.initializers.TruncatedNormal( stddev=config.initializer_range), dropout_rate=config.dropout_rate, ) hidden_cfg = dict( num_attention_heads=config.num_attention_heads, intermediate_size=config.intermediate_size, intermediate_activation=tf_utils.get_activation( config.hidden_activation), dropout_rate=config.dropout_rate, attention_dropout_rate=config.attention_dropout_rate, kernel_initializer=tf.keras.initializers.TruncatedNormal( stddev=config.initializer_range), ) kwargs = dict( embedding_cfg=embedding_cfg, hidden_cfg=hidden_cfg, num_hidden_instances=config.num_layers, pooled_output_dim=config.hidden_size, pooler_layer_initializer=tf.keras.initializers.TruncatedNormal( stddev=config.initializer_range)) return encoder_cls(**kwargs) if encoder_cls.__name__ != "TransformerEncoder": raise ValueError("Unknown encoder network class. %s" % str(encoder_cls)) encoder_network = encoder_cls( vocab_size=config.vocab_size, hidden_size=config.hidden_size, num_layers=config.num_layers, num_attention_heads=config.num_attention_heads, intermediate_size=config.intermediate_size, activation=tf_utils.get_activation(config.hidden_activation), dropout_rate=config.dropout_rate, attention_dropout_rate=config.attention_dropout_rate, sequence_length=None, max_sequence_length=config.max_position_embeddings, type_vocab_size=config.type_vocab_size, initializer=tf.keras.initializers.TruncatedNormal( stddev=config.initializer_range), embedding_width=config.embedding_size, embedding_layer=embedding_layer) return encoder_network