transformer_benchmark.py 27.6 KB
Newer Older
Toby Boyd's avatar
Toby Boyd committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Transformer w/Keras benchmark and accuracy tests."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time

from absl import flags
Adrian Kuegel's avatar
Adrian Kuegel committed
24
import tensorflow as tf
25
from official.benchmark import benchmark_wrappers
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26
from official.benchmark import owner_utils
27
from official.benchmark.perfzero_benchmark import PerfZeroBenchmark
28
29
from official.nlp.transformer import misc
from official.nlp.transformer import transformer_main as transformer_main
30
from official.utils.flags import core as flags_core
Toby Boyd's avatar
Toby Boyd committed
31

Allen Wang's avatar
Allen Wang committed
32
33
TPU_DATA_DIR = 'gs://mlcompass-data/transformer'
GPU_DATA_DIR = os.getenv('TMPDIR')
Toby Boyd's avatar
Toby Boyd committed
34
35
36
TRANSFORMER_EN2DE_DATA_DIR_NAME = 'wmt32k-en2de-official'
EN2DE_2014_BLEU_DATA_DIR_NAME = 'newstest2014'
FLAGS = flags.FLAGS
David Chen's avatar
David Chen committed
37
TMP_DIR = os.getenv('TMPDIR')
Toby Boyd's avatar
Toby Boyd committed
38
39
40
41
42
43
44


class TransformerBenchmark(PerfZeroBenchmark):
  """Methods common to executing transformer w/keras tests.

     Code under test for the Transformer Keras models report the same data and
     require the same FLAG setup.
Allen Wang's avatar
Allen Wang committed
45

Toby Boyd's avatar
Toby Boyd committed
46
47
48
  """

  def __init__(self, output_dir=None, default_flags=None, root_data_dir=None,
Tayo Oguntebi's avatar
Tayo Oguntebi committed
49
               flag_methods=None, tpu=None):
Allen Wang's avatar
Allen Wang committed
50
    self._set_data_files(root_data_dir=root_data_dir)
Allen Wang's avatar
Allen Wang committed
51
52
53
54
55
56
57
58
59
60
61
62

    if default_flags is None:
      default_flags = {}
    default_flags['data_dir'] = self.train_data_dir
    default_flags['vocab_file'] = self.vocab_file

    super(TransformerBenchmark, self).__init__(
        output_dir=output_dir,
        default_flags=default_flags,
        flag_methods=flag_methods,
        tpu=tpu)

Allen Wang's avatar
Allen Wang committed
63
  def _set_data_files(self, root_data_dir=None, tpu_run=False):
Allen Wang's avatar
Allen Wang committed
64
    """Sets train_data_dir, vocab_file, bleu_source and bleu_ref."""
Allen Wang's avatar
Allen Wang committed
65
66
    # Use remote storage for TPU, remote storage for GPU if defined, else
    # use environment provided root_data_dir.
Allen Wang's avatar
Allen Wang committed
67
68
    if tpu_run:
      root_data_dir = TPU_DATA_DIR
Allen Wang's avatar
Allen Wang committed
69
    elif GPU_DATA_DIR is not None:
Allen Wang's avatar
Allen Wang committed
70
      root_data_dir = GPU_DATA_DIR
Hongkun Yu's avatar
Hongkun Yu committed
71

Allen Wang's avatar
Allen Wang committed
72
73
    root_data_dir = root_data_dir if root_data_dir else ''

Toby Boyd's avatar
Toby Boyd committed
74
75
76
77
78
79
80
81
82
83
84
85
    self.train_data_dir = os.path.join(root_data_dir,
                                       TRANSFORMER_EN2DE_DATA_DIR_NAME)
    self.vocab_file = os.path.join(root_data_dir,
                                   TRANSFORMER_EN2DE_DATA_DIR_NAME,
                                   'vocab.ende.32768')
    self.bleu_source = os.path.join(root_data_dir,
                                    EN2DE_2014_BLEU_DATA_DIR_NAME,
                                    'newstest2014.en')
    self.bleu_ref = os.path.join(root_data_dir,
                                 EN2DE_2014_BLEU_DATA_DIR_NAME,
                                 'newstest2014.de')

Allen Wang's avatar
Allen Wang committed
86
87
88
89
90
91
92
  def _set_data_file_flags(self):
    """Sets the FLAGS for the data files."""
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    # Sets values directly to avoid validation check.
    FLAGS['bleu_source'].value = self.bleu_source
    FLAGS['bleu_ref'].value = self.bleu_ref
Toby Boyd's avatar
Toby Boyd committed
93

94
  @benchmark_wrappers.enable_runtime_flags
Toby Boyd's avatar
Toby Boyd committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
  def _run_and_report_benchmark(self,
                                bleu_max=None,
                                bleu_min=None,
                                log_steps=None,
                                total_batch_size=None,
                                warmup=1):
    """Report benchmark results by writing to local protobuf file.

    Args:
      bleu_max: highest passing level for bleu score.
      bleu_min: lowest passing level for bleu score.
      log_steps: How often the log was created for stats['step_timestamp_log'].
      total_batch_size: Global batch-size.
      warmup: number of entries in stats['step_timestamp_log'] to ignore.
    """
    start_time_sec = time.time()
    task = transformer_main.TransformerTask(FLAGS)
    stats = task.train()
    wall_time_sec = time.time() - start_time_sec

    metrics = []
    if 'bleu_uncased' in stats:
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
      if 'bleu_uncased_history' in stats:
        bleu_uncased_best = max(stats['bleu_uncased_history'],
                                key=lambda x: x[1])
        metrics.append({'name': 'bleu_uncased',
                        'value': bleu_uncased_best[1],
                        'min_value': bleu_min,
                        'max_value': bleu_max})
        metrics.append({'name': 'bleu_best_score_iteration',
                        'value': bleu_uncased_best[0]})
        metrics.append({'name': 'bleu_uncased_last',
                        'value': stats['bleu_uncased']})
      else:
        metrics.append({'name': 'bleu_uncased',
                        'value': stats['bleu_uncased'],
                        'min_value': bleu_min,
                        'max_value': bleu_max})
Toby Boyd's avatar
Toby Boyd committed
133
134

    if (warmup and 'step_timestamp_log' in stats and
Tayo Oguntebi's avatar
Tayo Oguntebi committed
135
        len(stats['step_timestamp_log']) > warmup + 1):
Toby Boyd's avatar
Toby Boyd committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
      # first entry in the time_log is start of step 1. The rest of the
      # entries are the end of each step recorded
      time_log = stats['step_timestamp_log']
      elapsed = time_log[-1].timestamp - time_log[warmup].timestamp
      num_examples = (
          total_batch_size * log_steps * (len(time_log) - warmup - 1))
      examples_per_sec = num_examples / elapsed
      metrics.append({'name': 'exp_per_second',
                      'value': examples_per_sec})

    if 'avg_exp_per_second' in stats:
      metrics.append({'name': 'avg_exp_per_second',
                      'value': stats['avg_exp_per_second']})

Tayo Oguntebi's avatar
Tayo Oguntebi committed
150
151
152
153
154
    if 'step_timestamp_log' in stats:
      time_log = stats['step_timestamp_log']
      metrics.append({'name': 'startup_time',
                      'value': time_log[0].timestamp - start_time_sec})

155
156
157
    flags_str = flags_core.get_nondefault_flags_as_str()
    self.report_benchmark(iters=-1, wall_time=wall_time_sec, metrics=metrics,
                          extras={'flags': flags_str})
Toby Boyd's avatar
Toby Boyd committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185


class TransformerBaseKerasAccuracy(TransformerBenchmark):
  """Benchmark accuracy tests for Transformer Base model w/ Keras."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    """Benchmark accuracy tests for Transformer Base model w/ Keras.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """
    flag_methods = [misc.define_transformer_flags]

    super(TransformerBaseKerasAccuracy, self).__init__(
        output_dir=output_dir, root_data_dir=root_data_dir,
        flag_methods=flag_methods)

  def benchmark_1_gpu(self):
    """Benchmark 1 gpu.

      The paper uses 8 GPUs and a much larger effective batch size, this is will
      not converge to the 27.3 BLEU (uncased) SOTA.
    """
    self._setup()
Allen Wang's avatar
Allen Wang committed
186
    self._set_data_file_flags()
Toby Boyd's avatar
Toby Boyd committed
187
188
    FLAGS.num_gpus = 1
    FLAGS.param_set = 'base'
189
190
191
    FLAGS.batch_size = 2048
    FLAGS.train_steps = 1000
    FLAGS.steps_between_evals = 500
Toby Boyd's avatar
Toby Boyd committed
192
193
194
195
196
197
198
199
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    # These bleu scores are based on test runs after at this limited
    # number of steps and batch size after verifying SOTA at 8xV100s.
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=25.3,
                                   bleu_max=26)

200
201
202
203
204
205
206
  def benchmark_1_gpu_static_batch(self):
    """Benchmark 1 gpu with static_batch.

      The paper uses 8 GPUs and a much larger effective batch size, this is will
      not converge to the 27.3 BLEU (uncased) SOTA.
    """
    self._setup()
Allen Wang's avatar
Allen Wang committed
207
    self._set_data_file_flags()
208
209
210
211
212
213
    FLAGS.num_gpus = 1
    FLAGS.param_set = 'base'
    FLAGS.batch_size = 4096
    FLAGS.train_steps = 100000
    FLAGS.steps_between_evals = 5000
    FLAGS.static_batch = True
214
    FLAGS.max_length = 64
215
216
217
218
219
220
221
222
223
224
225
226
227
228
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_static_batch')
    # These bleu scores are based on test runs after at this limited
    # number of steps and batch size after verifying SOTA at 8xV100s.
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=25.3,
                                   bleu_max=26)

  def benchmark_8_gpu(self):
    """Benchmark 8 gpu.

      Should converge to 27.3 BLEU (uncased). This has not been confirmed yet.
    """
    self._setup()
Allen Wang's avatar
Allen Wang committed
229
    self._set_data_file_flags()
230
231
232
233
    FLAGS.num_gpus = 8
    FLAGS.param_set = 'base'
    FLAGS.batch_size = 4096*8
    FLAGS.train_steps = 100000
234
    FLAGS.steps_between_evals = 20000
235
236
237
238
239
240
241
242
243
244
245
246
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=27,
                                   bleu_max=28)

  def benchmark_8_gpu_static_batch(self):
    """Benchmark 8 gpu.

      Should converge to 27.3 BLEU (uncased). This has not been confirmed yet.
    """
    self._setup()
Allen Wang's avatar
Allen Wang committed
247
    self._set_data_file_flags()
248
249
250
251
252
    FLAGS.num_gpus = 8
    FLAGS.param_set = 'base'
    FLAGS.batch_size = 4096*8
    FLAGS.train_steps = 100000
    FLAGS.static_batch = True
253
    FLAGS.max_length = 64
254
255
256
257
258
259
260
    FLAGS.steps_between_evals = 5000
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_static_batch')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=27,
                                   bleu_max=28)

Haoyu Zhang's avatar
Haoyu Zhang committed
261

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
class TransformerBigKerasAccuracy(TransformerBenchmark):
  """Benchmark accuracy tests for Transformer Big model w/ Keras."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    """Benchmark accuracy tests for Transformer Big model w/ Keras.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """
    flag_methods = [misc.define_transformer_flags]

    super(TransformerBigKerasAccuracy, self).__init__(
        output_dir=output_dir, root_data_dir=root_data_dir,
        flag_methods=flag_methods)

  def benchmark_8_gpu(self):
    """Benchmark 8 gpu.

284
285
286
287
    Over 6 runs with eval every 20K steps the average highest value was 28.195
    (bleu uncased). 28.424 was the highest and 27.96 the lowest. The values are
    the highest value seen during a run and occurred at a median of iteration 9.
    Iterations are not epochs, an iteration is a number of steps between evals.
288
289
    """
    self._setup()
Allen Wang's avatar
Allen Wang committed
290
    self._set_data_file_flags()
291
292
293
    FLAGS.num_gpus = 8
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
294
    FLAGS.train_steps = 20000 * 12
295
    FLAGS.steps_between_evals = 20000
296
297
298
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
299
300
                                   bleu_min=27.9,
                                   bleu_max=29.2)
301
302
303
304

  def benchmark_8_gpu_static_batch(self):
    """Benchmark 8 gpu.

305
    Should converge to 28.4 BLEU (uncased). This has not be verified yet."
306
307
    """
    self._setup()
Allen Wang's avatar
Allen Wang committed
308
    self._set_data_file_flags()
309
310
311
312
    FLAGS.num_gpus = 8
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
    FLAGS.static_batch = True
313
    FLAGS.max_length = 64
314
    FLAGS.train_steps = 20000 * 12
Toby Boyd's avatar
Toby Boyd committed
315
    FLAGS.steps_between_evals = 20000
316
317
318
319
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_static_batch')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=28,
320
                                   bleu_max=29.2)
321

322
323
324
  def benchmark_8_gpu_fp16(self):
    """Benchmark 8 gpu with dynamic batch and fp16.

325
326
327
328
329
330
331
332
    Over 6 runs with eval every 20K steps the average highest value was 28.247
    (bleu uncased). 28.424 was the highest and 28.09 the lowest. The values are
    the highest value seen during a run and occurred at a median of iteration
    11. While this could be interpreted as worse than FP32, if looking at the
    first iteration at which 28 is passed FP16 performs equal and possibly
    better. Although not part of the initial test runs, the highest value
    recorded with the arguments below was 28.9 at iteration 12. Iterations are
    not epochs, an iteration is a number of steps between evals.
333
334
    """
    self._setup()
Allen Wang's avatar
Allen Wang committed
335
    self._set_data_file_flags()
336
337
338
339
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
340
    FLAGS.train_steps = 20000 * 12
341
342
343
344
345
    FLAGS.steps_between_evals = 20000
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=28,
346
                                   bleu_max=29.2)
347

Vinh Nguyen's avatar
Vinh Nguyen committed
348
349
350
351
352
353
  def benchmark_8_gpu_fp16_amp(self):
    """Benchmark 8 gpu with dynamic batch and fp16 with automatic mixed precision.

      Should converge to 28.4 BLEU (uncased). This has not be verified yet."
    """
    self._setup()
Allen Wang's avatar
Allen Wang committed
354
    self._set_data_file_flags()
Vinh Nguyen's avatar
Vinh Nguyen committed
355
356
357
358
359
360
361
362
363
364
365
366
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
    FLAGS.train_steps = 20000 * 12
    FLAGS.steps_between_evals = 20000
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16_amp')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=28,
                                   bleu_max=29)
Hongkun Yu's avatar
Hongkun Yu committed
367

Toby Boyd's avatar
Toby Boyd committed
368
369
370
371
372
373
  def benchmark_8_gpu_static_batch_fp16(self):
    """Benchmark 8 gpu with static batch and fp16.

      Should converge to 28.4 BLEU (uncased). This has not be verified yet."
    """
    self._setup()
Allen Wang's avatar
Allen Wang committed
374
    self._set_data_file_flags()
Toby Boyd's avatar
Toby Boyd committed
375
376
377
378
379
380
381
382
383
384
385
386
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    FLAGS.train_steps = 400000
    FLAGS.steps_between_evals = 20000
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_static_batch_fp16')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=28,
387
                                   bleu_max=29.2)
Toby Boyd's avatar
Toby Boyd committed
388
389
390
391
392
393
394

  def benchmark_xla_8_gpu_static_batch_fp16(self):
    """Benchmark 8 gpu with static batch, XLA, and FP16.

      Should converge to 28.4 BLEU (uncased). This has not be verified yet."
    """
    self._setup()
Allen Wang's avatar
Allen Wang committed
395
    self._set_data_file_flags()
Toby Boyd's avatar
Toby Boyd committed
396
397
398
399
400
401
402
403
404
405
406
407
408
409
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_xla = True
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    FLAGS.train_steps = 400000
    FLAGS.steps_between_evals = 20000
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_static_batch_fp16')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=28,
410
                                   bleu_max=29.2)
Toby Boyd's avatar
Toby Boyd committed
411

Toby Boyd's avatar
Toby Boyd committed
412
413
414
415
416

class TransformerKerasBenchmark(TransformerBenchmark):
  """Benchmarks for Transformer (Base and Big) using Keras."""

  def __init__(self, output_dir=None, default_flags=None,
Tayo Oguntebi's avatar
Tayo Oguntebi committed
417
               root_data_dir=None, batch_per_gpu=4096, tpu=None):
Toby Boyd's avatar
Toby Boyd committed
418
419
420
421
422
423
424
    """Initialize.

    Args:
      output_dir: Based directory for saving artifacts, e.g. checkpoints.
      default_flags: default flags to use for all tests.
      root_data_dir: root directory for data, e.g. training.
      batch_per_gpu: batch size to use per gpu.
Tayo Oguntebi's avatar
Tayo Oguntebi committed
425
      tpu: Target TPU to use.
Toby Boyd's avatar
Toby Boyd committed
426
427
428
429
430
431
432
433
    """
    flag_methods = [misc.define_transformer_flags]
    self.batch_per_gpu = batch_per_gpu

    super(TransformerKerasBenchmark, self).__init__(
        output_dir=output_dir,
        default_flags=default_flags,
        root_data_dir=root_data_dir,
Tayo Oguntebi's avatar
Tayo Oguntebi committed
434
435
        flag_methods=flag_methods,
        tpu=tpu)
Toby Boyd's avatar
Toby Boyd committed
436

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
  def benchmark_1_gpu_no_dist_strat(self):
    """Benchmark 1 gpu without distribution strategy."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'off'
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_1_gpu_no_dist_strat_static_batch(self):
    """Benchmark 1 gpu without distribution strategy with static batch."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'off'
    FLAGS.batch_size = self.batch_per_gpu
guptapriya's avatar
guptapriya committed
453
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_ds_sb')
454
455
456
457
458
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

Toby Boyd's avatar
Toby Boyd committed
459
460
461
462
463
464
465
466
467
  def benchmark_1_gpu(self):
    """Benchmark 1 gpu."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
  def benchmark_1_gpu_fp16(self):
    """Benchmark 1 gpu FP16."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_1_gpu(self):
    """Benchmark 1 gpu w/xla."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
    FLAGS.enable_xla = True
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_1_gpu_fp16(self):
    """Benchmark 1 gpu w/xla and FP16."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

499
  def benchmark_1_gpu_static_batch(self):
500
    """Benchmark 1 gpu with static batch."""
501
502
503
504
505
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_static_batch')
    FLAGS.static_batch = True
506
    FLAGS.max_length = 64
507
508
509
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
  def benchmark_xla_1_gpu_static_batch(self):
    """Benchmark 1 gpu with static batch w/xla."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_static_batch')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    FLAGS.enable_xla = True
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_1_gpu_static_batch_fp16(self):
    """Benchmark 1 gpu with static batch FP16."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_static_batch_fp16')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_1_gpu_static_batch_fp16(self):
    """Benchmark 1 gpu with static batch w/xla and FP16."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_1_gpu_static_batch_fp16')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

549
550
551
552
553
554
555
556
557
  def benchmark_8_gpu(self):
    """Benchmark 8 gpu."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
  def benchmark_8_gpu_fp16(self):
    """Benchmark 8 gpu FP16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_8_gpu(self):
    """Benchmark 8 gpu w/xla."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.enable_xla = True
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_8_gpu_fp16(self):
    """Benchmark 8 gpu w/xla and FP16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

589
  def benchmark_8_gpu_static_batch(self):
590
    """Benchmark 8 gpu with static batch."""
591
    self._setup()
guptapriya's avatar
guptapriya committed
592
    FLAGS.num_gpus = 8
593
594
595
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_static_batch')
    FLAGS.static_batch = True
Haoyu Zhang's avatar
Haoyu Zhang committed
596
    FLAGS.max_length = 64
597
598
599
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
  def benchmark_8_gpu_static_batch_fp16(self):
    """Benchmark 8 gpu with static batch FP16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_static_batch_fp16')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_8_gpu_static_batch(self):
    """Benchmark 8 gpu with static batch w/xla."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.enable_xla = True
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_static_batch')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_8_gpu_static_batch_fp16(self):
    """Benchmark 8 gpu with static batch w/xla and FP16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_static_batch_fp16')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

Toby Boyd's avatar
Toby Boyd committed
639
640
641
642

class TransformerBaseKerasBenchmarkReal(TransformerKerasBenchmark):
  """Transformer based version real data benchmark tests."""

Hongkun Yu's avatar
Hongkun Yu committed
643
  def __init__(self, output_dir=TMP_DIR, root_data_dir=TMP_DIR, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
644
645
    def_flags = {}
    def_flags['param_set'] = 'base'
Adrian Kuegel's avatar
Adrian Kuegel committed
646
    def_flags['train_steps'] = 50
David Chen's avatar
David Chen committed
647
    def_flags['log_steps'] = 10
Toby Boyd's avatar
Toby Boyd committed
648
649
650
651
652
653
654
655
656

    super(TransformerBaseKerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags,
        root_data_dir=root_data_dir, batch_per_gpu=4096)


class TransformerBigKerasBenchmarkReal(TransformerKerasBenchmark):
  """Transformer based version real data benchmark tests."""

Tayo Oguntebi's avatar
Tayo Oguntebi committed
657
658
  def __init__(self, output_dir=TMP_DIR, root_data_dir=TMP_DIR,
               tpu=None, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
659
660
    def_flags = {}
    def_flags['param_set'] = 'big'
Adrian Kuegel's avatar
Adrian Kuegel committed
661
    def_flags['train_steps'] = 50
David Chen's avatar
David Chen committed
662
    def_flags['log_steps'] = 10
Toby Boyd's avatar
Toby Boyd committed
663
664
665

    super(TransformerBigKerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags,
Tayo Oguntebi's avatar
Tayo Oguntebi committed
666
667
668
        root_data_dir=root_data_dir, batch_per_gpu=3072,
        tpu=tpu)

Allen Wang's avatar
Allen Wang committed
669
670
671
672
673
674
  def _set_df_common(self):
    self._set_data_files(tpu_run=True)
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    FLAGS.distribution_strategy = 'tpu'
    FLAGS.padded_decode = True
Tayo Oguntebi's avatar
Tayo Oguntebi committed
675
    FLAGS.train_steps = 300
Tayo Oguntebi's avatar
Tayo Oguntebi committed
676
677
    FLAGS.log_steps = 150
    FLAGS.steps_between_evals = 150
Tayo Oguntebi's avatar
Tayo Oguntebi committed
678
679
    FLAGS.static_batch = True
    FLAGS.use_ctl = True
Allen Wang's avatar
Allen Wang committed
680
    FLAGS.enable_checkpointing = False
Tayo Oguntebi's avatar
Tayo Oguntebi committed
681
682
683
    FLAGS.max_length = 64
    FLAGS.decode_batch_size = 32
    FLAGS.decode_max_length = 97
Allen Wang's avatar
Allen Wang committed
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703

  def benchmark_2x2_tpu(self):
    """Port of former snaggletooth transformer_big model on 2x2."""
    self._setup()
    self._set_df_common()
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu')
    FLAGS.batch_size = 6144

    self._run_and_report_benchmark(
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

  @owner_utils.Owner('tf-graph-compiler')
  def benchmark_2x2_tpu_mlir(self):
    """Run transformer_big model on 2x2 with the MLIR Bridge enabled."""
    self._setup()
    self._set_df_common()
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu_mlir')
    FLAGS.batch_size = 6144
    tf.config.experimental.enable_mlir_bridge()
Tayo Oguntebi's avatar
Tayo Oguntebi committed
704
705
706
707

    self._run_and_report_benchmark(
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)
Adrian Kuegel's avatar
Adrian Kuegel committed
708

Tayo Oguntebi's avatar
Tayo Oguntebi committed
709
710
711
  def benchmark_4x4_tpu(self):
    """Port of former GCP transformer_big model on 4x4."""
    self._setup()
Allen Wang's avatar
Allen Wang committed
712
    self._set_df_common()
Tayo Oguntebi's avatar
Tayo Oguntebi committed
713
714
715
716
717
718
719
    FLAGS.model_dir = self._get_model_dir('benchmark_4x4_tpu')
    FLAGS.batch_size = 24576

    self._run_and_report_benchmark(
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
720
721
722
723
  @owner_utils.Owner('tf-graph-compiler')
  def benchmark_4x4_tpu_mlir(self):
    """Run transformer_big model on 4x4 with the MLIR Bridge enabled."""
    self._setup()
Allen Wang's avatar
Allen Wang committed
724
725
    self._set_df_common()
    FLAGS.model_dir = self._get_model_dir('benchmark_4x4_tpu_mlir')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
726
727
728
729
730
731
732
    FLAGS.batch_size = 24576
    tf.config.experimental.enable_mlir_bridge()

    self._run_and_report_benchmark(
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

Adrian Kuegel's avatar
Adrian Kuegel committed
733
734
735

if __name__ == '__main__':
  tf.test.main()