transformer_benchmark.py 28.7 KB
Newer Older
Toby Boyd's avatar
Toby Boyd committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Transformer w/Keras benchmark and accuracy tests."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time

from absl import flags
Adrian Kuegel's avatar
Adrian Kuegel committed
24
import tensorflow as tf
25
from official.benchmark import benchmark_wrappers
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26
from official.benchmark import owner_utils
27
from official.benchmark.perfzero_benchmark import PerfZeroBenchmark
28
29
from official.nlp.transformer import misc
from official.nlp.transformer import transformer_main as transformer_main
30
from official.utils.flags import core as flags_core
Toby Boyd's avatar
Toby Boyd committed
31
32
33
34

TRANSFORMER_EN2DE_DATA_DIR_NAME = 'wmt32k-en2de-official'
EN2DE_2014_BLEU_DATA_DIR_NAME = 'newstest2014'
FLAGS = flags.FLAGS
David Chen's avatar
David Chen committed
35
TMP_DIR = os.getenv('TMPDIR')
Toby Boyd's avatar
Toby Boyd committed
36
37
38
39
40
41
42
43
44
45


class TransformerBenchmark(PerfZeroBenchmark):
  """Methods common to executing transformer w/keras tests.

     Code under test for the Transformer Keras models report the same data and
     require the same FLAG setup.
  """

  def __init__(self, output_dir=None, default_flags=None, root_data_dir=None,
Tayo Oguntebi's avatar
Tayo Oguntebi committed
46
               flag_methods=None, tpu=None):
Hongkun Yu's avatar
Hongkun Yu committed
47
48
    root_data_dir = root_data_dir if root_data_dir else ''

Toby Boyd's avatar
Toby Boyd committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    self.train_data_dir = os.path.join(root_data_dir,
                                       TRANSFORMER_EN2DE_DATA_DIR_NAME)

    self.vocab_file = os.path.join(root_data_dir,
                                   TRANSFORMER_EN2DE_DATA_DIR_NAME,
                                   'vocab.ende.32768')

    self.bleu_source = os.path.join(root_data_dir,
                                    EN2DE_2014_BLEU_DATA_DIR_NAME,
                                    'newstest2014.en')

    self.bleu_ref = os.path.join(root_data_dir,
                                 EN2DE_2014_BLEU_DATA_DIR_NAME,
                                 'newstest2014.de')

David Chen's avatar
David Chen committed
64
65
    if default_flags is None:
      default_flags = {}
David Chen's avatar
David Chen committed
66
67
68
    default_flags['data_dir'] = self.train_data_dir
    default_flags['vocab_file'] = self.vocab_file

Toby Boyd's avatar
Toby Boyd committed
69
70
71
    super(TransformerBenchmark, self).__init__(
        output_dir=output_dir,
        default_flags=default_flags,
Tayo Oguntebi's avatar
Tayo Oguntebi committed
72
73
        flag_methods=flag_methods,
        tpu=tpu)
Toby Boyd's avatar
Toby Boyd committed
74

75
  @benchmark_wrappers.enable_runtime_flags
Toby Boyd's avatar
Toby Boyd committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
  def _run_and_report_benchmark(self,
                                bleu_max=None,
                                bleu_min=None,
                                log_steps=None,
                                total_batch_size=None,
                                warmup=1):
    """Report benchmark results by writing to local protobuf file.

    Args:
      bleu_max: highest passing level for bleu score.
      bleu_min: lowest passing level for bleu score.
      log_steps: How often the log was created for stats['step_timestamp_log'].
      total_batch_size: Global batch-size.
      warmup: number of entries in stats['step_timestamp_log'] to ignore.
    """
    start_time_sec = time.time()
    task = transformer_main.TransformerTask(FLAGS)
    stats = task.train()
    wall_time_sec = time.time() - start_time_sec

    metrics = []
    if 'bleu_uncased' in stats:
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
      if 'bleu_uncased_history' in stats:
        bleu_uncased_best = max(stats['bleu_uncased_history'],
                                key=lambda x: x[1])
        metrics.append({'name': 'bleu_uncased',
                        'value': bleu_uncased_best[1],
                        'min_value': bleu_min,
                        'max_value': bleu_max})
        metrics.append({'name': 'bleu_best_score_iteration',
                        'value': bleu_uncased_best[0]})
        metrics.append({'name': 'bleu_uncased_last',
                        'value': stats['bleu_uncased']})
      else:
        metrics.append({'name': 'bleu_uncased',
                        'value': stats['bleu_uncased'],
                        'min_value': bleu_min,
                        'max_value': bleu_max})
Toby Boyd's avatar
Toby Boyd committed
114
115

    if (warmup and 'step_timestamp_log' in stats and
Tayo Oguntebi's avatar
Tayo Oguntebi committed
116
        len(stats['step_timestamp_log']) > warmup + 1):
Toby Boyd's avatar
Toby Boyd committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
      # first entry in the time_log is start of step 1. The rest of the
      # entries are the end of each step recorded
      time_log = stats['step_timestamp_log']
      elapsed = time_log[-1].timestamp - time_log[warmup].timestamp
      num_examples = (
          total_batch_size * log_steps * (len(time_log) - warmup - 1))
      examples_per_sec = num_examples / elapsed
      metrics.append({'name': 'exp_per_second',
                      'value': examples_per_sec})

    if 'avg_exp_per_second' in stats:
      metrics.append({'name': 'avg_exp_per_second',
                      'value': stats['avg_exp_per_second']})

Tayo Oguntebi's avatar
Tayo Oguntebi committed
131
132
133
134
135
    if 'step_timestamp_log' in stats:
      time_log = stats['step_timestamp_log']
      metrics.append({'name': 'startup_time',
                      'value': time_log[0].timestamp - start_time_sec})

136
137
138
    flags_str = flags_core.get_nondefault_flags_as_str()
    self.report_benchmark(iters=-1, wall_time=wall_time_sec, metrics=metrics,
                          extras={'flags': flags_str})
Toby Boyd's avatar
Toby Boyd committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173


class TransformerBaseKerasAccuracy(TransformerBenchmark):
  """Benchmark accuracy tests for Transformer Base model w/ Keras."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    """Benchmark accuracy tests for Transformer Base model w/ Keras.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """
    flag_methods = [misc.define_transformer_flags]

    super(TransformerBaseKerasAccuracy, self).__init__(
        output_dir=output_dir, root_data_dir=root_data_dir,
        flag_methods=flag_methods)

  def benchmark_1_gpu(self):
    """Benchmark 1 gpu.

      The paper uses 8 GPUs and a much larger effective batch size, this is will
      not converge to the 27.3 BLEU (uncased) SOTA.
    """
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    # Sets values directly to avoid validation check.
    FLAGS['bleu_source'].value = self.bleu_source
    FLAGS['bleu_ref'].value = self.bleu_ref
    FLAGS.param_set = 'base'
174
175
176
    FLAGS.batch_size = 2048
    FLAGS.train_steps = 1000
    FLAGS.steps_between_evals = 500
Toby Boyd's avatar
Toby Boyd committed
177
178
179
180
181
182
183
184
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    # These bleu scores are based on test runs after at this limited
    # number of steps and batch size after verifying SOTA at 8xV100s.
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=25.3,
                                   bleu_max=26)

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
  def benchmark_1_gpu_static_batch(self):
    """Benchmark 1 gpu with static_batch.

      The paper uses 8 GPUs and a much larger effective batch size, this is will
      not converge to the 27.3 BLEU (uncased) SOTA.
    """
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    # Sets values directly to avoid validation check.
    FLAGS['bleu_source'].value = self.bleu_source
    FLAGS['bleu_ref'].value = self.bleu_ref
    FLAGS.param_set = 'base'
    FLAGS.batch_size = 4096
    FLAGS.train_steps = 100000
    FLAGS.steps_between_evals = 5000
    FLAGS.static_batch = True
203
    FLAGS.max_length = 64
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_static_batch')
    # These bleu scores are based on test runs after at this limited
    # number of steps and batch size after verifying SOTA at 8xV100s.
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=25.3,
                                   bleu_max=26)

  def benchmark_8_gpu(self):
    """Benchmark 8 gpu.

      Should converge to 27.3 BLEU (uncased). This has not been confirmed yet.
    """
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    # Sets values directly to avoid validation check.
    FLAGS['bleu_source'].value = self.bleu_source
    FLAGS['bleu_ref'].value = self.bleu_ref
    FLAGS.param_set = 'base'
    FLAGS.batch_size = 4096*8
    FLAGS.train_steps = 100000
227
    FLAGS.steps_between_evals = 20000
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=27,
                                   bleu_max=28)

  def benchmark_8_gpu_static_batch(self):
    """Benchmark 8 gpu.

      Should converge to 27.3 BLEU (uncased). This has not been confirmed yet.
    """
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    # Sets values directly to avoid validation check.
    FLAGS['bleu_source'].value = self.bleu_source
    FLAGS['bleu_ref'].value = self.bleu_ref
    FLAGS.param_set = 'base'
    FLAGS.batch_size = 4096*8
    FLAGS.train_steps = 100000
    FLAGS.static_batch = True
250
    FLAGS.max_length = 64
251
252
253
254
255
256
257
    FLAGS.steps_between_evals = 5000
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_static_batch')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=27,
                                   bleu_max=28)

Haoyu Zhang's avatar
Haoyu Zhang committed
258

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
class TransformerBigKerasAccuracy(TransformerBenchmark):
  """Benchmark accuracy tests for Transformer Big model w/ Keras."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    """Benchmark accuracy tests for Transformer Big model w/ Keras.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """
    flag_methods = [misc.define_transformer_flags]

    super(TransformerBigKerasAccuracy, self).__init__(
        output_dir=output_dir, root_data_dir=root_data_dir,
        flag_methods=flag_methods)

  def benchmark_8_gpu(self):
    """Benchmark 8 gpu.

281
282
283
284
    Over 6 runs with eval every 20K steps the average highest value was 28.195
    (bleu uncased). 28.424 was the highest and 27.96 the lowest. The values are
    the highest value seen during a run and occurred at a median of iteration 9.
    Iterations are not epochs, an iteration is a number of steps between evals.
285
286
287
288
289
290
291
292
293
294
    """
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    # Sets values directly to avoid validation check.
    FLAGS['bleu_source'].value = self.bleu_source
    FLAGS['bleu_ref'].value = self.bleu_ref
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
295
    FLAGS.train_steps = 20000 * 12
296
    FLAGS.steps_between_evals = 20000
297
298
299
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
300
301
                                   bleu_min=27.9,
                                   bleu_max=29.2)
302
303
304
305

  def benchmark_8_gpu_static_batch(self):
    """Benchmark 8 gpu.

306
    Should converge to 28.4 BLEU (uncased). This has not be verified yet."
307
308
309
310
311
312
313
314
315
316
317
    """
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    # Sets values directly to avoid validation check.
    FLAGS['bleu_source'].value = self.bleu_source
    FLAGS['bleu_ref'].value = self.bleu_ref
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
    FLAGS.static_batch = True
318
    FLAGS.max_length = 64
319
    FLAGS.train_steps = 20000 * 12
Toby Boyd's avatar
Toby Boyd committed
320
    FLAGS.steps_between_evals = 20000
321
322
323
324
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_static_batch')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=28,
325
                                   bleu_max=29.2)
326

327
328
329
  def benchmark_8_gpu_fp16(self):
    """Benchmark 8 gpu with dynamic batch and fp16.

330
331
332
333
334
335
336
337
    Over 6 runs with eval every 20K steps the average highest value was 28.247
    (bleu uncased). 28.424 was the highest and 28.09 the lowest. The values are
    the highest value seen during a run and occurred at a median of iteration
    11. While this could be interpreted as worse than FP32, if looking at the
    first iteration at which 28 is passed FP16 performs equal and possibly
    better. Although not part of the initial test runs, the highest value
    recorded with the arguments below was 28.9 at iteration 12. Iterations are
    not epochs, an iteration is a number of steps between evals.
338
339
340
341
342
343
344
345
346
347
348
    """
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    # Sets values directly to avoid validation check.
    FLAGS['bleu_source'].value = self.bleu_source
    FLAGS['bleu_ref'].value = self.bleu_ref
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
349
    FLAGS.train_steps = 20000 * 12
350
351
352
353
354
    FLAGS.steps_between_evals = 20000
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=28,
355
                                   bleu_max=29.2)
356

Vinh Nguyen's avatar
Vinh Nguyen committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
  def benchmark_8_gpu_fp16_amp(self):
    """Benchmark 8 gpu with dynamic batch and fp16 with automatic mixed precision.

      Should converge to 28.4 BLEU (uncased). This has not be verified yet."
    """
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    # Sets values directly to avoid validation check.
    FLAGS['bleu_source'].value = self.bleu_source
    FLAGS['bleu_ref'].value = self.bleu_ref
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
    FLAGS.train_steps = 20000 * 12
    FLAGS.steps_between_evals = 20000
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16_amp')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=28,
                                   bleu_max=29)
Hongkun Yu's avatar
Hongkun Yu committed
380

Toby Boyd's avatar
Toby Boyd committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
  def benchmark_8_gpu_static_batch_fp16(self):
    """Benchmark 8 gpu with static batch and fp16.

      Should converge to 28.4 BLEU (uncased). This has not be verified yet."
    """
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    # Sets values directly to avoid validation check.
    FLAGS['bleu_source'].value = self.bleu_source
    FLAGS['bleu_ref'].value = self.bleu_ref
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    FLAGS.train_steps = 400000
    FLAGS.steps_between_evals = 20000
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_static_batch_fp16')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=28,
404
                                   bleu_max=29.2)
Toby Boyd's avatar
Toby Boyd committed
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

  def benchmark_xla_8_gpu_static_batch_fp16(self):
    """Benchmark 8 gpu with static batch, XLA, and FP16.

      Should converge to 28.4 BLEU (uncased). This has not be verified yet."
    """
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_xla = True
    FLAGS.data_dir = self.train_data_dir
    FLAGS.vocab_file = self.vocab_file
    # Sets values directly to avoid validation check.
    FLAGS['bleu_source'].value = self.bleu_source
    FLAGS['bleu_ref'].value = self.bleu_ref
    FLAGS.param_set = 'big'
    FLAGS.batch_size = 3072*8
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    FLAGS.train_steps = 400000
    FLAGS.steps_between_evals = 20000
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_static_batch_fp16')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps,
                                   bleu_min=28,
431
                                   bleu_max=29.2)
Toby Boyd's avatar
Toby Boyd committed
432

Toby Boyd's avatar
Toby Boyd committed
433
434
435
436
437

class TransformerKerasBenchmark(TransformerBenchmark):
  """Benchmarks for Transformer (Base and Big) using Keras."""

  def __init__(self, output_dir=None, default_flags=None,
Tayo Oguntebi's avatar
Tayo Oguntebi committed
438
               root_data_dir=None, batch_per_gpu=4096, tpu=None):
Toby Boyd's avatar
Toby Boyd committed
439
440
441
442
443
444
445
    """Initialize.

    Args:
      output_dir: Based directory for saving artifacts, e.g. checkpoints.
      default_flags: default flags to use for all tests.
      root_data_dir: root directory for data, e.g. training.
      batch_per_gpu: batch size to use per gpu.
Tayo Oguntebi's avatar
Tayo Oguntebi committed
446
      tpu: Target TPU to use.
Toby Boyd's avatar
Toby Boyd committed
447
448
449
450
451
452
453
454
    """
    flag_methods = [misc.define_transformer_flags]
    self.batch_per_gpu = batch_per_gpu

    super(TransformerKerasBenchmark, self).__init__(
        output_dir=output_dir,
        default_flags=default_flags,
        root_data_dir=root_data_dir,
Tayo Oguntebi's avatar
Tayo Oguntebi committed
455
456
        flag_methods=flag_methods,
        tpu=tpu)
Toby Boyd's avatar
Toby Boyd committed
457

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
  def benchmark_1_gpu_no_dist_strat(self):
    """Benchmark 1 gpu without distribution strategy."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'off'
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_1_gpu_no_dist_strat_static_batch(self):
    """Benchmark 1 gpu without distribution strategy with static batch."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'off'
    FLAGS.batch_size = self.batch_per_gpu
guptapriya's avatar
guptapriya committed
474
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_ds_sb')
475
476
477
478
479
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

Toby Boyd's avatar
Toby Boyd committed
480
481
482
483
484
485
486
487
488
  def benchmark_1_gpu(self):
    """Benchmark 1 gpu."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
  def benchmark_1_gpu_fp16(self):
    """Benchmark 1 gpu FP16."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_1_gpu(self):
    """Benchmark 1 gpu w/xla."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
    FLAGS.enable_xla = True
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_1_gpu_fp16(self):
    """Benchmark 1 gpu w/xla and FP16."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

520
  def benchmark_1_gpu_static_batch(self):
521
    """Benchmark 1 gpu with static batch."""
522
523
524
525
526
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_static_batch')
    FLAGS.static_batch = True
527
    FLAGS.max_length = 64
528
529
530
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
  def benchmark_xla_1_gpu_static_batch(self):
    """Benchmark 1 gpu with static batch w/xla."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_static_batch')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    FLAGS.enable_xla = True
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_1_gpu_static_batch_fp16(self):
    """Benchmark 1 gpu with static batch FP16."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_static_batch_fp16')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_1_gpu_static_batch_fp16(self):
    """Benchmark 1 gpu with static batch w/xla and FP16."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = self.batch_per_gpu
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_1_gpu_static_batch_fp16')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

570
571
572
573
574
575
576
577
578
  def benchmark_8_gpu(self):
    """Benchmark 8 gpu."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
  def benchmark_8_gpu_fp16(self):
    """Benchmark 8 gpu FP16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_8_gpu(self):
    """Benchmark 8 gpu w/xla."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.enable_xla = True
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_8_gpu_fp16(self):
    """Benchmark 8 gpu w/xla and FP16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

610
  def benchmark_8_gpu_static_batch(self):
611
    """Benchmark 8 gpu with static batch."""
612
    self._setup()
guptapriya's avatar
guptapriya committed
613
    FLAGS.num_gpus = 8
614
615
616
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_static_batch')
    FLAGS.static_batch = True
Haoyu Zhang's avatar
Haoyu Zhang committed
617
    FLAGS.max_length = 64
618
619
620
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
  def benchmark_8_gpu_static_batch_fp16(self):
    """Benchmark 8 gpu with static batch FP16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_static_batch_fp16')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_8_gpu_static_batch(self):
    """Benchmark 8 gpu with static batch w/xla."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.enable_xla = True
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_static_batch')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

  def benchmark_xla_8_gpu_static_batch_fp16(self):
    """Benchmark 8 gpu with static batch w/xla and FP16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = self.batch_per_gpu * 8
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_static_batch_fp16')
    FLAGS.static_batch = True
    FLAGS.max_length = 64
    self._run_and_report_benchmark(total_batch_size=FLAGS.batch_size,
                                   log_steps=FLAGS.log_steps)

Toby Boyd's avatar
Toby Boyd committed
660
661
662
663

class TransformerBaseKerasBenchmarkReal(TransformerKerasBenchmark):
  """Transformer based version real data benchmark tests."""

Hongkun Yu's avatar
Hongkun Yu committed
664
  def __init__(self, output_dir=TMP_DIR, root_data_dir=TMP_DIR, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
665
666
    def_flags = {}
    def_flags['param_set'] = 'base'
Adrian Kuegel's avatar
Adrian Kuegel committed
667
    def_flags['train_steps'] = 50
David Chen's avatar
David Chen committed
668
    def_flags['log_steps'] = 10
Toby Boyd's avatar
Toby Boyd committed
669
670
671
672
673
674
675
676
677

    super(TransformerBaseKerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags,
        root_data_dir=root_data_dir, batch_per_gpu=4096)


class TransformerBigKerasBenchmarkReal(TransformerKerasBenchmark):
  """Transformer based version real data benchmark tests."""

Tayo Oguntebi's avatar
Tayo Oguntebi committed
678
679
  def __init__(self, output_dir=TMP_DIR, root_data_dir=TMP_DIR,
               tpu=None, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
680
681
    def_flags = {}
    def_flags['param_set'] = 'big'
Adrian Kuegel's avatar
Adrian Kuegel committed
682
    def_flags['train_steps'] = 50
David Chen's avatar
David Chen committed
683
    def_flags['log_steps'] = 10
Toby Boyd's avatar
Toby Boyd committed
684
685
686

    super(TransformerBigKerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags,
Tayo Oguntebi's avatar
Tayo Oguntebi committed
687
688
689
690
691
692
693
694
        root_data_dir=root_data_dir, batch_per_gpu=3072,
        tpu=tpu)

  def benchmark_2x2_tpu(self):
    """Port of former snaggletooth transformer_big model on 2x2."""
    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu')
    FLAGS.train_steps = 300
Tayo Oguntebi's avatar
Tayo Oguntebi committed
695
696
    FLAGS.log_steps = 150
    FLAGS.steps_between_evals = 150
Tayo Oguntebi's avatar
Tayo Oguntebi committed
697
698
699
700
701
702
703
704
705
706
707
708
709
    FLAGS.distribution_strategy = 'tpu'
    FLAGS.static_batch = True
    FLAGS.use_ctl = True
    FLAGS.batch_size = 6144
    FLAGS.max_length = 64
    FLAGS.decode_batch_size = 32
    FLAGS.decode_max_length = 97
    FLAGS.padded_decode = True
    FLAGS.enable_checkpointing = False

    self._run_and_report_benchmark(
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)
Adrian Kuegel's avatar
Adrian Kuegel committed
710

Tayo Oguntebi's avatar
Tayo Oguntebi committed
711
712
713
714
715
  def benchmark_4x4_tpu(self):
    """Port of former GCP transformer_big model on 4x4."""
    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_4x4_tpu')
    FLAGS.train_steps = 300
Tayo Oguntebi's avatar
Tayo Oguntebi committed
716
717
    FLAGS.log_steps = 150
    FLAGS.steps_between_evals = 150
Tayo Oguntebi's avatar
Tayo Oguntebi committed
718
719
720
721
722
723
724
725
726
727
728
729
730
731
    FLAGS.distribution_strategy = 'tpu'
    FLAGS.static_batch = True
    FLAGS.use_ctl = True
    FLAGS.batch_size = 24576
    FLAGS.max_length = 64
    FLAGS.decode_batch_size = 32
    FLAGS.decode_max_length = 97
    FLAGS.padded_decode = True
    FLAGS.enable_checkpointing = False

    self._run_and_report_benchmark(
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
  @owner_utils.Owner('tf-graph-compiler')
  def benchmark_4x4_tpu_mlir(self):
    """Run transformer_big model on 4x4 with the MLIR Bridge enabled."""
    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_4x4_tpu')
    FLAGS.train_steps = 300
    FLAGS.log_steps = 150
    FLAGS.steps_between_evals = 150
    FLAGS.distribution_strategy = 'tpu'
    FLAGS.static_batch = True
    FLAGS.use_ctl = True
    FLAGS.batch_size = 24576
    FLAGS.max_length = 64
    FLAGS.decode_batch_size = 32
    FLAGS.decode_max_length = 97
    FLAGS.padded_decode = True
    FLAGS.enable_checkpointing = False
    tf.config.experimental.enable_mlir_bridge()

    self._run_and_report_benchmark(
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

Adrian Kuegel's avatar
Adrian Kuegel committed
755
756
757

if __name__ == '__main__':
  tf.test.main()