keras_imagenet_main.py 8.07 KB
Newer Older
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Runs a ResNet model on the ImageNet dataset."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from absl import app as absl_app
from absl import flags
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.resnet import imagenet_main
26
from official.resnet import imagenet_preprocessing
27
from official.resnet import resnet_run_loop
28
from official.resnet.keras import keras_common
Shining Sun's avatar
Shining Sun committed
29
from official.resnet.keras import resnet50
30
31
32
33
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import distribution_utils

34
35
# import os
# os.environ['TF2_BEHAVIOR'] = 'enabled'
36
37
38
39

LR_SCHEDULE = [    # (multiplier, epoch to start) tuples
    (1.0, 5), (0.1, 30), (0.01, 60), (0.001, 80)
]
Shining Sun's avatar
Shining Sun committed
40

41

42
def learning_rate_schedule(current_epoch, current_batch, batches_per_epoch, batch_size):
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
  """Handles linear scaling rule, gradual warmup, and LR decay.

  The learning rate starts at 0, then it increases linearly per step.
  After 5 epochs we reach the base learning rate (scaled to account
    for batch size).
  After 30, 60 and 80 epochs the learning rate is divided by 10.
  After 90 epochs training stops and the LR is set to 0. This ensures
    that we train for exactly 90 epochs for reproducibility.

  Args:
    current_epoch: integer, current epoch indexed from 0.
    current_batch: integer, current batch in the current epoch, indexed from 0.

  Returns:
    Adjusted learning rate.
  """
Shining Sun's avatar
Shining Sun committed
59
  initial_learning_rate = keras_common.BASE_LEARNING_RATE * batch_size / 256
60
61
62
63
  epoch = current_epoch + float(current_batch) / batches_per_epoch
  warmup_lr_multiplier, warmup_end_epoch = LR_SCHEDULE[0]
  if epoch < warmup_end_epoch:
    # Learning rate increases linearly per step.
64
    return initial_learning_rate * warmup_lr_multiplier * epoch / warmup_end_epoch
65
66
  for mult, start_epoch in LR_SCHEDULE:
    if epoch >= start_epoch:
67
      learning_rate = initial_learning_rate * mult
68
69
70
71
72
73
    else:
      break
  return learning_rate


def parse_record_keras(raw_record, is_training, dtype):
Shining Sun's avatar
Shining Sun committed
74
  """Adjust the shape of label."""
Shining Sun's avatar
Shining Sun committed
75
  image, label = imagenet_main.parse_record(raw_record, is_training, dtype)
Shining Sun's avatar
Shining Sun committed
76

Shining Sun's avatar
Shining Sun committed
77
78
79
  # Subtract one so that labels are in [0, 1000), and cast to float32 for
  # Keras model.
  label = tf.cast(tf.cast(tf.reshape(label, shape=[1]), dtype=tf.int32) - 1,
Shining Sun's avatar
Shining Sun committed
80
      dtype=tf.float32)
81
82
83
  return image, label


Shining Sun's avatar
Shining Sun committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
def get_synth_input_fn(height, width, num_channels, num_classes,
                       dtype=tf.float32):
  """Returns an input function that returns a dataset with random data.

  This input_fn returns a data set that iterates over a set of random data and
  bypasses all preprocessing, e.g. jpeg decode and copy. The host to device
  copy is still included. This used to find the upper throughput bound when
  tunning the full input pipeline.

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor
    dtype: Data type for features/images.

  Returns:
    An input_fn that can be used in place of a real one to return a dataset
    that can be used for iteration.
  """
  # pylint: disable=unused-argument
  def input_fn(is_training, data_dir, batch_size, *args, **kwargs):
    """Returns dataset filled with random data."""
    # Synthetic input should be within [0, 255].
    inputs = tf.truncated_normal(
        [batch_size] + [height, width, num_channels],
        dtype=dtype,
        mean=127,
        stddev=60,
        name='synthetic_inputs')

    labels = tf.random_uniform(
        [batch_size] + [1],
        minval=0,
        maxval=num_classes - 1,
        dtype=tf.int32,
        name='synthetic_labels')
    data = tf.data.Dataset.from_tensors((inputs, labels)).repeat()
    data = data.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
    return data

  return input_fn


129
130
131
132
133
134
135
136
137
def run_imagenet_with_keras(flags_obj):
  """Run ResNet ImageNet training and eval loop using native Keras APIs.

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.
  """
138
139
  if flags_obj.enable_eager:
    tf.enable_eager_execution()
Shining Sun's avatar
Shining Sun committed
140

141
142
143
144
145
146
147
148
149
150
  dtype = flags_core.get_tf_dtype(flags_obj)
  if dtype == 'fp16':
    raise ValueError('dtype fp16 is not supported in Keras. Use the default '
                     'value(fp32).')

  per_device_batch_size = distribution_utils.per_device_batch_size(
      flags_obj.batch_size, flags_core.get_num_gpus(flags_obj))

  # pylint: disable=protected-access
  if flags_obj.use_synthetic_data:
Shining Sun's avatar
Shining Sun committed
151
    input_fn = get_synth_input_fn(
152
153
154
155
        height=imagenet_main.DEFAULT_IMAGE_SIZE,
        width=imagenet_main.DEFAULT_IMAGE_SIZE,
        num_channels=imagenet_main.NUM_CHANNELS,
        num_classes=imagenet_main.NUM_CLASSES,
Shining Sun's avatar
Shining Sun committed
156
        dtype=flags_core.get_tf_dtype(flags_obj))
157
  else:
Shining Sun's avatar
Shining Sun committed
158
    input_fn = imagenet_main.input_fn
159

Shining Sun's avatar
Shining Sun committed
160
161
162
163
164
165
  train_input_dataset = input_fn(
        is_training=True,
        data_dir=flags_obj.data_dir,
        batch_size=per_device_batch_size,
        num_epochs=flags_obj.train_epochs,
        parse_record_fn=parse_record_keras)
166

Shining Sun's avatar
Shining Sun committed
167
168
169
170
171
172
  eval_input_dataset = input_fn(
        is_training=False,
        data_dir=flags_obj.data_dir,
        batch_size=per_device_batch_size,
        num_epochs=flags_obj.train_epochs,
        parse_record_fn=parse_record_keras)
173

Shining Sun's avatar
Shining Sun committed
174
  optimizer = keras_common.get_optimizer()
175
176
  strategy = distribution_utils.get_distribution_strategy(
    flags_obj.num_gpus, flags_obj.use_one_device_strategy)
177

178
  model = resnet50.ResNet50(num_classes=imagenet_main.NUM_CLASSES)
Shining Sun's avatar
Shining Sun committed
179

Shining Sun's avatar
Shining Sun committed
180
  model.compile(loss='sparse_categorical_crossentropy',
Shining Sun's avatar
Shining Sun committed
181
                optimizer=optimizer,
Shining Sun's avatar
Shining Sun committed
182
                metrics=['sparse_categorical_accuracy'],
183
                distribute=strategy)
Shining Sun's avatar
Shining Sun committed
184

185
186
  time_callback, tensorboard_callback, lr_callback = keras_common.get_callbacks(
      learning_rate_schedule, imagenet_main.NUM_IMAGES['train'])
187

188
189
  steps_per_epoch = imagenet_main.NUM_IMAGES['train'] // flags_obj.batch_size
  num_eval_steps = (imagenet_main.NUM_IMAGES['validation'] //
190
                  flags_obj.batch_size)
Shining Sun's avatar
Shining Sun committed
191

Shining Sun's avatar
Shining Sun committed
192
193
194
195
196
197
198
  train_steps = imagenet_main.NUM_IMAGES['train'] // flags_obj.batch_size
  train_epochs = flags_obj.train_epochs

  if flags_obj.train_steps:
    train_steps = min(flags_obj.train_steps, train_steps)
    train_epochs = 1

Shining Sun's avatar
bug fix  
Shining Sun committed
199
  history = model.fit(train_input_dataset,
Shining Sun's avatar
Shining Sun committed
200
201
                      epochs=train_epochs,
                      steps_per_epoch=train_steps,
Shining Sun's avatar
bug fix  
Shining Sun committed
202
203
204
205
206
207
208
209
                      callbacks=[
                        time_callback,
                        lr_callback,
                        tensorboard_callback
                      ],
                      validation_steps=num_eval_steps,
                      validation_data=eval_input_dataset,
                      verbose=1)
Shining Sun's avatar
Shining Sun committed
210

211
212
213
214
  if not flags_obj.skip_eval:
    eval_output = model.evaluate(eval_input_dataset,
                                 steps=num_eval_steps,
                                 verbose=1)
Shining Sun's avatar
bug fix  
Shining Sun committed
215
216

  stats = keras_common.analyze_fit_and_eval_result(history, eval_output)
217
218

  return stats
219

Shining Sun's avatar
Shining Sun committed
220

221
222
223
224
225
226
def main(_):
  with logger.benchmark_context(flags.FLAGS):
    run_imagenet_with_keras(flags.FLAGS)


if __name__ == '__main__':
227
  tf.logging.set_verbosity(tf.logging.INFO)
228
  imagenet_main.define_imagenet_flags()
Shining Sun's avatar
Shining Sun committed
229
  keras_common.define_keras_flags()
230
  absl_app.run(main)