keras_imagenet_main.py 11.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Runs a ResNet model on the ImageNet dataset."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time

from absl import app as absl_app
from absl import flags
import numpy as np
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.resnet import imagenet_main
from official.resnet import imagenet_preprocessing
from official.resnet import resnet_run_loop
from official.resnet.keras import keras_resnet_model
32
from official.resnet.keras import resnet_model_tpu
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import distribution_utils
from tensorflow.python.keras.optimizer_v2 import gradient_descent as gradient_descent_v2


class TimeHistory(tf.keras.callbacks.Callback):
  """Callback for Keras models."""

  def __init__(self, batch_size):
    """Callback for Keras models.

    Args:
      batch_size: Total batch size.

    """
    self._batch_size = batch_size
    super(TimeHistory, self).__init__()

  def on_train_begin(self, logs=None):
    self.epoch_times_secs = []
    self.batch_times_secs = []
    self.record_batch = True

  def on_epoch_begin(self, epoch, logs=None):
    self.epoch_time_start = time.time()

  def on_epoch_end(self, epoch, logs=None):
    self.epoch_times_secs.append(time.time() - self.epoch_time_start)

  def on_batch_begin(self, batch, logs=None):
    if self.record_batch:
      self.batch_time_start = time.time()
      self.record_batch = False

  def on_batch_end(self, batch, logs=None):
    n = 100
    if batch % n == 0:
      last_n_batches = time.time() - self.batch_time_start
      examples_per_second = (self._batch_size * n) / last_n_batches
      self.batch_times_secs.append(last_n_batches)
      self.record_batch = True
      # TODO(anjalisridhar): add timestamp as well.
      if batch != 0:
        tf.logging.info("BenchmarkMetric: {'num_batches':%d, 'time_taken': %f,"
                        "'images_per_second': %f}" %
                        (batch, last_n_batches, examples_per_second))


LR_SCHEDULE = [    # (multiplier, epoch to start) tuples
    (1.0, 5), (0.1, 30), (0.01, 60), (0.001, 80)
]
85
BASE_LEARNING_RATE = 0.1  # This matches Jing's version.
86

87
def learning_rate_schedule(current_epoch, current_batch, batches_per_epoch, batch_size):
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
  """Handles linear scaling rule, gradual warmup, and LR decay.

  The learning rate starts at 0, then it increases linearly per step.
  After 5 epochs we reach the base learning rate (scaled to account
    for batch size).
  After 30, 60 and 80 epochs the learning rate is divided by 10.
  After 90 epochs training stops and the LR is set to 0. This ensures
    that we train for exactly 90 epochs for reproducibility.

  Args:
    current_epoch: integer, current epoch indexed from 0.
    current_batch: integer, current batch in the current epoch, indexed from 0.

  Returns:
    Adjusted learning rate.
  """
104
  initial_learning_rate = BASE_LEARNING_RATE * batch_size / 256
105
106
107
108
  epoch = current_epoch + float(current_batch) / batches_per_epoch
  warmup_lr_multiplier, warmup_end_epoch = LR_SCHEDULE[0]
  if epoch < warmup_end_epoch:
    # Learning rate increases linearly per step.
109
    return initial_learning_rate * warmup_lr_multiplier * epoch / warmup_end_epoch
110
111
  for mult, start_epoch in LR_SCHEDULE:
    if epoch >= start_epoch:
112
      learning_rate = initial_learning_rate * mult
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    else:
      break
  return learning_rate


class LearningRateBatchScheduler(tf.keras.callbacks.Callback):
  """Callback to update learning rate on every batch (not epoch boundaries).

  N.B. Only support Keras optimizers, not TF optimizers.

  Args:
      schedule: a function that takes an epoch index and a batch index as input
          (both integer, indexed from 0) and returns a new learning rate as
          output (float).
  """

  def __init__(self, schedule, batch_size, num_images):
    super(LearningRateBatchScheduler, self).__init__()
    self.schedule = schedule
    self.batches_per_epoch = num_images / batch_size
133
    self.batch_size = batch_size
134
135
136
137
138
139
140
141
142
    self.epochs = -1
    self.prev_lr = -1

  def on_epoch_begin(self, epoch, logs=None):
    #if not hasattr(self.model.optimizer, 'learning_rate'):
    #  raise ValueError('Optimizer must have a "learning_rate" attribute.')
    self.epochs += 1

  def on_batch_begin(self, batch, logs=None):
143
    lr = self.schedule(self.epochs, batch, self.batches_per_epoch, self.batch_size)
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    if not isinstance(lr, (float, np.float32, np.float64)):
      raise ValueError('The output of the "schedule" function should be float.')
    if lr != self.prev_lr:
      tf.keras.backend.set_value(self.model.optimizer.learning_rate, lr)
      self.prev_lr = lr
      tf.logging.debug('Epoch %05d Batch %05d: LearningRateBatchScheduler change '
                   'learning rate to %s.', self.epochs, batch, lr)



def parse_record_keras(raw_record, is_training, dtype):
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

  Args:
    raw_record: scalar Tensor tf.string containing a serialized
      Example protocol buffer.
    is_training: A boolean denoting whether the input is for training.
    dtype: Data type to use for input images.

  Returns:
    Tuple with processed image tensor and one-hot-encoded label tensor.
  """
  image_buffer, label, bbox = imagenet_main._parse_example_proto(raw_record)

  image = imagenet_preprocessing.preprocess_image(
      image_buffer=image_buffer,
      bbox=bbox,
      output_height=imagenet_main._DEFAULT_IMAGE_SIZE,
      output_width=imagenet_main._DEFAULT_IMAGE_SIZE,
      num_channels=imagenet_main._NUM_CHANNELS,
      is_training=is_training)
  image = tf.cast(image, dtype)
  label = tf.sparse_to_dense(label, (imagenet_main._NUM_CLASSES,), 1)

  return image, label


def run_imagenet_with_keras(flags_obj):
  """Run ResNet ImageNet training and eval loop using native Keras APIs.

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.
  """
193
194
195
  if flags_obj.enable_eager:
    tf.enable_eager_execution()
  
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
  dtype = flags_core.get_tf_dtype(flags_obj)
  if dtype == 'fp16':
    raise ValueError('dtype fp16 is not supported in Keras. Use the default '
                     'value(fp32).')

  per_device_batch_size = distribution_utils.per_device_batch_size(
      flags_obj.batch_size, flags_core.get_num_gpus(flags_obj))

  # pylint: disable=protected-access
  if flags_obj.use_synthetic_data:
    synth_input_fn = resnet_run_loop.get_synth_input_fn(
        imagenet_main._DEFAULT_IMAGE_SIZE, imagenet_main._DEFAULT_IMAGE_SIZE,
        imagenet_main._NUM_CHANNELS, imagenet_main._NUM_CLASSES,
        dtype=flags_core.get_tf_dtype(flags_obj))
    train_input_dataset = synth_input_fn(
        batch_size=per_device_batch_size,
        height=imagenet_main._DEFAULT_IMAGE_SIZE,
        width=imagenet_main._DEFAULT_IMAGE_SIZE,
        num_channels=imagenet_main._NUM_CHANNELS,
        num_classes=imagenet_main._NUM_CLASSES,
        dtype=dtype)
    eval_input_dataset = synth_input_fn(
        batch_size=per_device_batch_size,
        height=imagenet_main._DEFAULT_IMAGE_SIZE,
        width=imagenet_main._DEFAULT_IMAGE_SIZE,
        num_channels=imagenet_main._NUM_CHANNELS,
        num_classes=imagenet_main._NUM_CLASSES,
        dtype=dtype)
  # pylint: enable=protected-access

  else:
    train_input_dataset = imagenet_main.input_fn(
          True,
          flags_obj.data_dir,
          batch_size=per_device_batch_size,
          num_epochs=flags_obj.train_epochs,
          parse_record_fn=parse_record_keras)

    eval_input_dataset = imagenet_main.input_fn(
          False,
          flags_obj.data_dir,
          batch_size=per_device_batch_size,
          num_epochs=flags_obj.train_epochs,
          parse_record_fn=parse_record_keras)


  # Use Keras ResNet50 applications model and native keras APIs
  # initialize RMSprop optimizer
  # TODO(anjalisridhar): Move to using MomentumOptimizer.
  # opt = tf.train.GradientDescentOptimizer(learning_rate=0.0001)
  # I am setting an initial LR of 0.001 since this will be reset
  # at the beginning of the training loop.
Priya Gupta's avatar
Priya Gupta committed
248
  opt = gradient_descent_v2.SGD(learning_rate=0.1, momentum=0.9)
249
250

  # TF Optimizer:
Priya Gupta's avatar
Priya Gupta committed
251
252
  # learning_rate = BASE_LEARNING_RATE * flags_obj.batch_size / 256
  # opt = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.9)
253

254
255
256
257
  
  strategy = distribution_utils.get_distribution_strategy(
      num_gpus=flags_obj.num_gpus)

258
259
260
261
262
  if flags_obj.use_tpu_model:
    model = resnet_model_tpu.ResNet50(num_classes=imagenet_main._NUM_CLASSES)
  else:
    model = keras_resnet_model.ResNet50(classes=imagenet_main._NUM_CLASSES,
                                        weights=None)
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    
  loss = 'categorical_crossentropy'
  accuracy = 'categorical_accuracy'
 
  model.compile(loss=loss,
                optimizer=opt,
                metrics=[accuracy],
                distribute=strategy)

  steps_per_epoch = imagenet_main._NUM_IMAGES['train'] // flags_obj.batch_size

  time_callback = TimeHistory(flags_obj.batch_size)

  tesorboard_callback = tf.keras.callbacks.TensorBoard(
277
    log_dir=flags_obj.model_dir)
278
    #update_freq="batch")  # Add this if want per batch logging.
279
280
281
282
283
284
285
286
287
288
289

  lr_callback = LearningRateBatchScheduler(
    learning_rate_schedule,
    batch_size=flags_obj.batch_size,
    num_images=imagenet_main._NUM_IMAGES['train'])
    
  num_eval_steps = (imagenet_main._NUM_IMAGES['validation'] //
                  flags_obj.batch_size)
  
  model.fit(train_input_dataset,
            epochs=flags_obj.train_epochs,
290
            steps_per_epoch=steps_per_epoch,
291
292
            callbacks=[
              time_callback,
Priya Gupta's avatar
Priya Gupta committed
293
              lr_callback,
294
295
              tesorboard_callback
            ],
296
297
            validation_steps=num_eval_steps,
            validation_data=eval_input_dataset,
298
299
300
301
302
303
304
            verbose=1)
  
  eval_output = model.evaluate(eval_input_dataset,
                               steps=num_eval_steps,
                               verbose=1)
  print('Test loss:', eval_output[0])

305
306
307
308
def define_keras_imagenet_flags():
  flags.DEFINE_boolean(name='enable_eager', default=False, help='Enable eager?')
    
  
309
310
311
312
313
314
def main(_):
  with logger.benchmark_context(flags.FLAGS):
    run_imagenet_with_keras(flags.FLAGS)


if __name__ == '__main__':
315
  tf.logging.set_verbosity(tf.logging.INFO)
316
  define_keras_imagenet_flags()
317
  imagenet_main.define_imagenet_flags()
318
  flags.DEFINE_boolean(name='use_tpu_model', default=False, help='Use resnet model from tpu.')
319
  absl_app.run(main)