resnet_cifar_model.py 9.96 KB
Newer Older
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Shining Sun's avatar
Shining Sun committed
15
"""ResNet56 model for Keras adapted from tf.keras.applications.ResNet50.
16
17
18
19
20
21
22
23
24
25

# Reference:
- [Deep Residual Learning for Image Recognition](
    https://arxiv.org/abs/1512.03385)
Adapted from code contributed by BigMoyan.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

26
import functools
27
import tensorflow as tf
Toby Boyd's avatar
Toby Boyd committed
28
29
from tensorflow.python.keras import backend
from tensorflow.python.keras import layers
30
from tensorflow.python.keras import regularizers
31
32


33
BATCH_NORM_DECAY = 0.997
34
BATCH_NORM_EPSILON = 1e-5
35
L2_WEIGHT_DECAY = 2e-4
36
37


Shining Sun's avatar
Shining Sun committed
38
39
40
41
42
43
def identity_building_block(input_tensor,
                            kernel_size,
                            filters,
                            stage,
                            block,
                            training=None):
44
45
46
47
48
49
50
51
  """The identity block is the block that has no conv layer at shortcut.

  Arguments:
    input_tensor: input tensor
    kernel_size: default 3, the kernel size of
        middle conv layer at main path
    filters: list of integers, the filters of 3 conv layer at main path
    stage: integer, current stage label, used for generating layer names
52
    block: current block label, used for generating layer names
Shining Sun's avatar
Shining Sun committed
53
54
    training: Only used if training keras model with Estimator.  In other
      scenarios it is handled automatically.
55
56
57
58
59

  Returns:
    Output tensor for the block.
  """
  filters1, filters2 = filters
60
  if backend.image_data_format() == 'channels_last':
61
62
63
64
65
66
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
  x = layers.Conv2D(filters1, kernel_size,
                    padding='same', use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2a')(input_tensor)
  x = layers.BatchNormalization(
      axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '2a')(x, training=training)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters2, kernel_size,
                    padding='same', use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2b')(x)
  x = layers.BatchNormalization(
      axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '2b')(x, training=training)

  x = layers.add([x, input_tensor])
  x = layers.Activation('relu')(x)
88
89
90
91
  return x


def conv_building_block(input_tensor,
Shining Sun's avatar
Shining Sun committed
92
93
94
95
96
97
                        kernel_size,
                        filters,
                        stage,
                        block,
                        strides=(2, 2),
                        training=None):
98
99
100
101
102
103
104
105
  """A block that has a conv layer at shortcut.

  Arguments:
    input_tensor: input tensor
    kernel_size: default 3, the kernel size of
        middle conv layer at main path
    filters: list of integers, the filters of 3 conv layer at main path
    stage: integer, current stage label, used for generating layer names
106
    block: current block label, used for generating layer names
107
    strides: Strides for the first conv layer in the block.
Shining Sun's avatar
Shining Sun committed
108
109
    training: Only used if training keras model with Estimator.  In other
      scenarios it is handled automatically.
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

  Returns:
    Output tensor for the block.

  Note that from stage 3,
  the first conv layer at main path is with strides=(2, 2)
  And the shortcut should have strides=(2, 2) as well
  """
  filters1, filters2 = filters
  if tf.keras.backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
  x = layers.Conv2D(filters1, kernel_size, strides=strides,
                    padding='same', use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2a')(input_tensor)
  x = layers.BatchNormalization(
      axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '2a')(x, training=training)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters2, kernel_size, padding='same', use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2b')(x)
  x = layers.BatchNormalization(
      axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '2b')(x, training=training)

  shortcut = layers.Conv2D(filters2, (1, 1), strides=strides, use_bias=False,
                           kernel_initializer='he_normal',
                           kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                           name=conv_name_base + '1')(input_tensor)
  shortcut = layers.BatchNormalization(
      axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '1')(shortcut, training=training)

  x = layers.add([x, shortcut])
  x = layers.Activation('relu')(x)
154
155
156
  return x


157
158
159
160
161
162
163
164
def resnet_block(input_tensor,
                 size,
                 kernel_size,
                 filters,
                 stage,
                 conv_strides=(2, 2),
                 training=None):
  """A block which applies conv followed by multiple identity blocks.
165
166

  Arguments:
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    input_tensor: input tensor
    size: integer, number of constituent conv/identity building blocks.
    A conv block is applied once, followed by (size - 1) identity blocks.
    kernel_size: default 3, the kernel size of
        middle conv layer at main path
    filters: list of integers, the filters of 3 conv layer at main path
    stage: integer, current stage label, used for generating layer names
    conv_strides: Strides for the first conv layer in the block.
    training: Only used if training keras model with Estimator.  In other
      scenarios it is handled automatically.

  Returns:
    Output tensor after applying conv and identity blocks.
  """

  x = conv_building_block(input_tensor, kernel_size, filters, stage=stage,
                          strides=conv_strides, block='block_0',
                          training=training)
  for i in range(size - 1):
    x = identity_building_block(x, kernel_size, filters, stage=stage,
                                block='block_%d' % (i + 1), training=training)
  return x

190

191
192
193
194
195
196
197
198
199
200
def resnet(num_blocks, classes=10, training=None):
  """Instantiates the ResNet architecture.

  Arguments:
    num_blocks: integer, the number of conv/identity blocks in each block.
      The ResNet contains 3 blocks with each block containing one conv block
      followed by (layers_per_block - 1) number of idenity blocks. Each
      conv/idenity block has 2 convolutional layers. With the input
      convolutional layer and the pooling layer towards the end, this brings
      the total size of the network to (6*num_blocks + 2)
Shining Sun's avatar
Shining Sun committed
201
202
203
    classes: optional number of classes to classify images into
    training: Only used if training keras model with Estimator.  In other
    scenarios it is handled automatically.
204
205

  Returns:
Shining Sun's avatar
Shining Sun committed
206
    A Keras model instance.
207
  """
208

209
210
211
  input_shape = (32, 32, 3)
  img_input = layers.Input(shape=input_shape)

Shining Sun's avatar
Shining Sun committed
212
  if backend.image_data_format() == 'channels_first':
213
214
    x = layers.Lambda(lambda x: backend.permute_dimensions(x, (0, 3, 1, 2)),
                      name='transpose')(img_input)
215
    bn_axis = 1
Toby Boyd's avatar
Toby Boyd committed
216
  else:  # channel_last
217
    x = img_input
Shining Sun's avatar
Shining Sun committed
218
    bn_axis = 3
219

220
221
222
223
224
225
226
227
228
229
230
231
  x = layers.ZeroPadding2D(padding=(1, 1), name='conv1_pad')(x)
  x = layers.Conv2D(16, (3, 3),
                    strides=(1, 1),
                    padding='valid', use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name='conv1')(x)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name='bn_conv1',)(x, training=training)
  x = layers.Activation('relu')(x)
232

233
234
235
236
237
238
239
240
  x = resnet_block(x, size=num_blocks, kernel_size=3, filters=[16, 16],
                   stage=2, conv_strides=(1, 1), training=training)

  x = resnet_block(x, size=num_blocks, kernel_size=3, filters=[32, 32],
                   stage=3, conv_strides=(2, 2), training=training)

  x = resnet_block(x, size=num_blocks, kernel_size=3, filters=[64, 64],
                   stage=4, conv_strides=(2, 2), training=training)
Shining Sun's avatar
Shining Sun committed
241

242
243
244
245
246
247
  rm_axes = [1, 2] if backend.image_data_format() == 'channels_last' else [2, 3]
  x = layers.Lambda(lambda x: backend.mean(x, rm_axes), name='reduce_mean')(x)
  x = layers.Dense(classes, activation='softmax',
                   # kernel_initializer='he_normal',
                   kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                   name='fc10')(x)
248
249
250
251
252
253

  inputs = img_input
  # Create model.
  model = tf.keras.models.Model(inputs, x, name='resnet56')

  return model
254
255
256
257
258
259


resnet20 = functools.partial(resnet, num_blocks=3)
resnet32 = functools.partial(resnet, num_blocks=5)
resnet56 = functools.partial(resnet, num_blocks=9)
resnet10 = functools.partial(resnet, num_blocks=110)