retinanet_benchmark.py 12.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes RetinaNet benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

# pylint: disable=g-bad-import-order
import json
import time

from absl import flags
from absl.testing import flagsaver
import tensorflow as tf
# pylint: enable=g-bad-import-order

30
from official.benchmark import benchmark_wrappers
Jose Baiocchi's avatar
Jose Baiocchi committed
31
32
33
from official.benchmark import perfzero_benchmark
from official.utils.flags import core as flags_core
from official.utils.misc import keras_utils
34
from official.vision.detection import main as detection
Jose Baiocchi's avatar
Jose Baiocchi committed
35
from official.vision.detection.configs import base_config
36
37
38
39
40
41
42
43
44
45
46

FLAGS = flags.FLAGS

# pylint: disable=line-too-long
COCO_TRAIN_DATA = 'gs://tf-perfzero-data/coco/train*'
COCO_EVAL_DATA = 'gs://tf-perfzero-data/coco/val*'
COCO_EVAL_JSON = 'gs://tf-perfzero-data/coco/instances_val2017.json'
RESNET_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/retinanet/resnet50-checkpoint-2018-02-07'
# pylint: enable=line-too-long


Allen Wang's avatar
Allen Wang committed
47
class BenchmarkBase(perfzero_benchmark.PerfZeroBenchmark):
Jose Baiocchi's avatar
Jose Baiocchi committed
48
49
50
  """Base class to hold methods common to test classes."""

  def __init__(self, **kwargs):
Allen Wang's avatar
Allen Wang committed
51
    super(BenchmarkBase, self).__init__(**kwargs)
Jose Baiocchi's avatar
Jose Baiocchi committed
52
53
54
55
    self.timer_callback = None

  def _report_benchmark(self, stats, start_time_sec, wall_time_sec, min_ap,
                        max_ap, warmup):
56
57
58
59
    """Report benchmark results by writing to local protobuf file.

    Args:
      stats: dict returned from Detection models with known entries.
Jose Baiocchi's avatar
Jose Baiocchi committed
60
61
      start_time_sec: the start of the benchmark execution in seconds
      wall_time_sec: the duration of the benchmark execution in seconds
62
63
64
65
      min_ap: Minimum detection AP constraint to verify correctness of the
        model.
      max_ap: Maximum detection AP accuracy constraint to verify correctness of
        the model.
Jose Baiocchi's avatar
Jose Baiocchi committed
66
      warmup: Number of time log entries to ignore when computing examples/sec.
67
68
69
70
71
72
73
    """
    metrics = [{
        'name': 'total_loss',
        'value': stats['total_loss'],
    }]
    if self.timer_callback:
      metrics.append({
74
          'name': 'exp_per_second',
Jose Baiocchi's avatar
Jose Baiocchi committed
75
76
77
78
79
          'value': self.timer_callback.get_examples_per_sec(warmup)
      })
      metrics.append({
          'name': 'startup_time',
          'value': self.timer_callback.get_startup_time(start_time_sec)
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
      })
    else:
      metrics.append({
          'name': 'exp_per_second',
          'value': 0.0,
      })

    if 'eval_metrics' in stats:
      metrics.append({
          'name': 'AP',
          'value': stats['AP'],
          'min_value': min_ap,
          'max_value': max_ap,
      })
    flags_str = flags_core.get_nondefault_flags_as_str()
    self.report_benchmark(
        iters=stats['total_steps'],
        wall_time=wall_time_sec,
        metrics=metrics,
        extras={'flags': flags_str})


Allen Wang's avatar
Allen Wang committed
102
class DetectionBenchmarkBase(BenchmarkBase):
103
104
  """Base class to hold methods common to test classes in the module."""

Jose Baiocchi's avatar
Jose Baiocchi committed
105
  def __init__(self, **kwargs):
106
107
108
109
    self.train_data_path = COCO_TRAIN_DATA
    self.eval_data_path = COCO_EVAL_DATA
    self.eval_json_path = COCO_EVAL_JSON
    self.resnet_checkpoint_path = RESNET_CHECKPOINT_PATH
Allen Wang's avatar
Allen Wang committed
110
    super(DetectionBenchmarkBase, self).__init__(**kwargs)
111
112
113

  def _run_detection_main(self):
    """Starts detection job."""
Yeqing Li's avatar
Yeqing Li committed
114
    if self.timer_callback:
Jose Baiocchi's avatar
Jose Baiocchi committed
115
      FLAGS.log_steps = 0  # prevent detection.run from adding the same callback
Yeqing Li's avatar
Yeqing Li committed
116
117
118
      return detection.run(callbacks=[self.timer_callback])
    else:
      return detection.run()
119
120


Allen Wang's avatar
Allen Wang committed
121
class DetectionAccuracy(DetectionBenchmarkBase):
122
123
124
125
126
127
128
  """Accuracy test for RetinaNet model.

  Tests RetinaNet detection task model accuracy. The naming
  convention of below test cases follow
  `benchmark_(number of gpus)_gpu_(dataset type)` format.
  """

Allen Wang's avatar
Allen Wang committed
129
130
131
132
  def __init__(self, model, **kwargs):
    self.model = model
    super(DetectionAccuracy, self).__init__(**kwargs)

133
  @benchmark_wrappers.enable_runtime_flags
Jose Baiocchi's avatar
Jose Baiocchi committed
134
135
136
137
138
139
  def _run_and_report_benchmark(self,
                                params,
                                min_ap=0.325,
                                max_ap=0.35,
                                do_eval=True,
                                warmup=1):
Allen Wang's avatar
Allen Wang committed
140
    """Starts Detection accuracy benchmark test."""
Jose Baiocchi's avatar
Jose Baiocchi committed
141
142
    FLAGS.params_override = json.dumps(params)
    # Need timer callback to measure performance
Hongkun Yu's avatar
Hongkun Yu committed
143
    self.timer_callback = keras_utils.TimeHistory(
Jose Baiocchi's avatar
Jose Baiocchi committed
144
145
146
        batch_size=params['train']['batch_size'],
        log_steps=FLAGS.log_steps,
    )
147
148
149
150
151
152

    start_time_sec = time.time()
    FLAGS.mode = 'train'
    summary, _ = self._run_detection_main()
    wall_time_sec = time.time() - start_time_sec

Jose Baiocchi's avatar
Jose Baiocchi committed
153
154
155
156
    if do_eval:
      FLAGS.mode = 'eval'
      eval_metrics = self._run_detection_main()
      summary.update(eval_metrics)
157

Jose Baiocchi's avatar
Jose Baiocchi committed
158
159
160
    summary['total_steps'] = params['train']['total_steps']
    self._report_benchmark(summary, start_time_sec, wall_time_sec, min_ap,
                           max_ap, warmup)
161
162

  def _setup(self):
Allen Wang's avatar
Allen Wang committed
163
164
    super(DetectionAccuracy, self)._setup()
    FLAGS.model = self.model
165

Jose Baiocchi's avatar
Jose Baiocchi committed
166
167
  def _params(self):
    return {
Pengchong Jin's avatar
Pengchong Jin committed
168
169
170
        'architecture': {
            'use_bfloat16': True,
        },
171
172
173
174
175
        'train': {
            'batch_size': 64,
            'iterations_per_loop': 100,
            'total_steps': 22500,
            'train_file_pattern': self.train_data_path,
Yeqing Li's avatar
Yeqing Li committed
176
177
178
179
            'checkpoint': {
                'path': self.resnet_checkpoint_path,
                'prefix': 'resnet50/'
            },
Jose Baiocchi's avatar
Jose Baiocchi committed
180
181
            # Speed up ResNet training when loading from the checkpoint.
            'frozen_variable_prefix': base_config.RESNET_FROZEN_VAR_PREFIX,
182
183
184
185
186
187
188
189
190
191
192
193
194
        },
        'eval': {
            'batch_size': 8,
            'eval_samples': 5000,
            'val_json_file': self.eval_json_path,
            'eval_file_pattern': self.eval_data_path,
        },
    }

  @flagsaver.flagsaver
  def benchmark_8_gpu_coco(self):
    """Run RetinaNet model accuracy test with 8 GPUs."""
    self._setup()
Jose Baiocchi's avatar
Jose Baiocchi committed
195
196
    params = self._params()
    FLAGS.num_gpus = 8
197
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_coco')
Jose Baiocchi's avatar
Jose Baiocchi committed
198
199
    FLAGS.strategy_type = 'mirrored'
    self._run_and_report_benchmark(params)
200
201


Allen Wang's avatar
Allen Wang committed
202
203
class DetectionBenchmarkReal(DetectionAccuracy):
  """Short benchmark performance tests for a detection model.
204

Allen Wang's avatar
Allen Wang committed
205
  Tests detection performance in different accelerator configurations.
206
207
208
209
  The naming convention of below test cases follow
  `benchmark_(number of gpus)_gpu` format.
  """

Jose Baiocchi's avatar
Jose Baiocchi committed
210
  def _setup(self):
Allen Wang's avatar
Allen Wang committed
211
    super(DetectionBenchmarkReal, self)._setup()
Jose Baiocchi's avatar
Jose Baiocchi committed
212
213
    # Use negative value to avoid saving checkpoints.
    FLAGS.save_checkpoint_freq = -1
214
215
216

  @flagsaver.flagsaver
  def benchmark_8_gpu_coco(self):
Allen Wang's avatar
Allen Wang committed
217
    """Run detection model accuracy test with 8 GPUs."""
218
    self._setup()
Jose Baiocchi's avatar
Jose Baiocchi committed
219
    params = self._params()
Pengchong Jin's avatar
Pengchong Jin committed
220
    params['architecture']['use_bfloat16'] = False
David Chen's avatar
David Chen committed
221
    params['train']['total_steps'] = 1875  # One epoch.
Yeqing Li's avatar
Yeqing Li committed
222
223
224
225
226
227
228
    # The iterations_per_loop must be one, otherwise the number of examples per
    # second would be wrong. Currently only support calling callback per batch
    # when each loop only runs on one batch, i.e. host loop for one step. The
    # performance of this situation might be lower than the case of
    # iterations_per_loop > 1.
    # Related bug: b/135933080
    params['train']['iterations_per_loop'] = 1
229
    params['eval']['eval_samples'] = 8
Jose Baiocchi's avatar
Jose Baiocchi committed
230
    FLAGS.num_gpus = 8
231
    FLAGS.model_dir = self._get_model_dir('real_benchmark_8_gpu_coco')
Jose Baiocchi's avatar
Jose Baiocchi committed
232
233
    FLAGS.strategy_type = 'mirrored'
    self._run_and_report_benchmark(params)
234

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
235
236
  @flagsaver.flagsaver
  def benchmark_1_gpu_coco(self):
Allen Wang's avatar
Allen Wang committed
237
    """Run detection model accuracy test with 1 GPU."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
238
    self._setup()
Jose Baiocchi's avatar
Jose Baiocchi committed
239
    params = self._params()
Pengchong Jin's avatar
Pengchong Jin committed
240
    params['architecture']['use_bfloat16'] = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
241
242
243
244
    params['train']['batch_size'] = 8
    params['train']['total_steps'] = 200
    params['train']['iterations_per_loop'] = 1
    params['eval']['eval_samples'] = 8
Jose Baiocchi's avatar
Jose Baiocchi committed
245
    FLAGS.num_gpus = 1
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
246
    FLAGS.model_dir = self._get_model_dir('real_benchmark_1_gpu_coco')
Yeqing Li's avatar
Yeqing Li committed
247
    FLAGS.strategy_type = 'one_device'
Jose Baiocchi's avatar
Jose Baiocchi committed
248
    self._run_and_report_benchmark(params)
249

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
250
251
  @flagsaver.flagsaver
  def benchmark_xla_1_gpu_coco(self):
Allen Wang's avatar
Allen Wang committed
252
    """Run detection model accuracy test with 1 GPU and XLA enabled."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
253
    self._setup()
Jose Baiocchi's avatar
Jose Baiocchi committed
254
    params = self._params()
Pengchong Jin's avatar
Pengchong Jin committed
255
    params['architecture']['use_bfloat16'] = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
256
257
258
259
    params['train']['batch_size'] = 8
    params['train']['total_steps'] = 200
    params['train']['iterations_per_loop'] = 1
    params['eval']['eval_samples'] = 8
Jose Baiocchi's avatar
Jose Baiocchi committed
260
261
    FLAGS.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('real_benchmark_xla_1_gpu_coco')
Yeqing Li's avatar
Yeqing Li committed
262
    FLAGS.strategy_type = 'one_device'
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
263
    FLAGS.enable_xla = True
Jose Baiocchi's avatar
Jose Baiocchi committed
264
265
266
267
    self._run_and_report_benchmark(params)

  @flagsaver.flagsaver
  def benchmark_2x2_tpu_coco(self):
Allen Wang's avatar
Allen Wang committed
268
    """Run detection model accuracy test with 4 TPUs."""
Jose Baiocchi's avatar
Jose Baiocchi committed
269
270
271
272
273
274
275
276
277
    self._setup()
    params = self._params()
    params['train']['batch_size'] = 64
    params['train']['total_steps'] = 1875  # One epoch.
    params['train']['iterations_per_loop'] = 500
    FLAGS.model_dir = self._get_model_dir('real_benchmark_2x2_tpu_coco')
    FLAGS.strategy_type = 'tpu'
    self._run_and_report_benchmark(params, do_eval=False, warmup=0)

Allen Wang's avatar
Allen Wang committed
278
279
  @flagsaver.flagsaver
  def benchmark_4x4_tpu_coco(self):
Allen Wang's avatar
Allen Wang committed
280
    """Run detection model accuracy test with 4 TPUs."""
Allen Wang's avatar
Allen Wang committed
281
282
283
284
285
286
287
288
289
290
291
    self._setup()
    params = self._params()
    params['train']['batch_size'] = 256
    params['train']['total_steps'] = 469  # One epoch.
    params['train']['iterations_per_loop'] = 500
    FLAGS.model_dir = self._get_model_dir('real_benchmark_4x4_tpu_coco')
    FLAGS.strategy_type = 'tpu'
    self._run_and_report_benchmark(params, do_eval=False, warmup=0)

  @flagsaver.flagsaver
  def benchmark_2x2_tpu_coco_mlir(self):
Allen Wang's avatar
Allen Wang committed
292
    """Run detection model accuracy test with 4 TPUs."""
Allen Wang's avatar
Allen Wang committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    self._setup()
    params = self._params()
    params['train']['batch_size'] = 64
    params['train']['total_steps'] = 1875  # One epoch.
    params['train']['iterations_per_loop'] = 500
    FLAGS.model_dir = self._get_model_dir('real_benchmark_2x2_tpu_coco_mlir')
    FLAGS.strategy_type = 'tpu'
    tf.config.experimental.enable_mlir_bridge()
    self._run_and_report_benchmark(params, do_eval=False, warmup=0)

  @flagsaver.flagsaver
  def benchmark_4x4_tpu_coco_mlir(self):
    """Run RetinaNet model accuracy test with 4 TPUs."""
    self._setup()
    params = self._params()
    params['train']['batch_size'] = 256
    params['train']['total_steps'] = 469  # One epoch.
    params['train']['iterations_per_loop'] = 500
    FLAGS.model_dir = self._get_model_dir('real_benchmark_4x4_tpu_coco_mlir')
    FLAGS.strategy_type = 'tpu'
    tf.config.experimental.enable_mlir_bridge()
    self._run_and_report_benchmark(params, do_eval=False, warmup=0)

316
317
  @flagsaver.flagsaver
  def benchmark_2x2_tpu_spinenet_coco(self):
Allen Wang's avatar
Allen Wang committed
318
    """Run detection model with SpineNet backbone accuracy test with 4 TPUs."""
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    self._setup()
    params = self._params()
    params['architecture']['backbone'] = 'spinenet'
    params['architecture']['multilevel_features'] = 'identity'
    params['architecture']['use_bfloat16'] = False
    params['train']['batch_size'] = 64
    params['train']['total_steps'] = 1875  # One epoch.
    params['train']['iterations_per_loop'] = 500
    params['train']['checkpoint']['path'] = ''
    FLAGS.model_dir = self._get_model_dir(
        'real_benchmark_2x2_tpu_spinenet_coco')
    FLAGS.strategy_type = 'tpu'
    self._run_and_report_benchmark(params, do_eval=False, warmup=0)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
333

Allen Wang's avatar
Allen Wang committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
class RetinanetBenchmarkReal(DetectionBenchmarkReal):
  """Short benchmark performance tests for Retinanet model."""

  def __init__(self, **kwargs):
    super(RetinanetBenchmarkReal, self).__init__(
        model='retinanet',
        **kwargs)


class MaskRCNNBenchmarkReal(DetectionBenchmarkReal):
  """Short benchmark performance tests for Mask RCNN model."""

  def __init__(self, **kwargs):
    super(MaskRCNNBenchmarkReal, self).__init__(
        model='mask_rcnn',
        **kwargs)


class ShapeMaskBenchmarkReal(DetectionBenchmarkReal):
  """Short benchmark performance tests for ShapeMask model."""

  def __init__(self, **kwargs):
    super(ShapeMaskBenchmarkReal, self).__init__(
        model='shapemask',
        **kwargs)


361
362
if __name__ == '__main__':
  tf.test.main()