retinanet_benchmark.py 10.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes RetinaNet benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

# pylint: disable=g-bad-import-order
import json
import time

from absl import flags
from absl.testing import flagsaver
import tensorflow as tf
# pylint: enable=g-bad-import-order

30
from official.benchmark import benchmark_wrappers
Jose Baiocchi's avatar
Jose Baiocchi committed
31
32
33
from official.benchmark import perfzero_benchmark
from official.utils.flags import core as flags_core
from official.utils.misc import keras_utils
34
from official.vision.detection import main as detection
Jose Baiocchi's avatar
Jose Baiocchi committed
35
from official.vision.detection.configs import base_config
36
37
38
39
40
41
42
43
44
45
46

FLAGS = flags.FLAGS

# pylint: disable=line-too-long
COCO_TRAIN_DATA = 'gs://tf-perfzero-data/coco/train*'
COCO_EVAL_DATA = 'gs://tf-perfzero-data/coco/val*'
COCO_EVAL_JSON = 'gs://tf-perfzero-data/coco/instances_val2017.json'
RESNET_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/retinanet/resnet50-checkpoint-2018-02-07'
# pylint: enable=line-too-long


Jose Baiocchi's avatar
Jose Baiocchi committed
47
48
49
50
51
52
53
54
55
class DetectionBenchmarkBase(perfzero_benchmark.PerfZeroBenchmark):
  """Base class to hold methods common to test classes."""

  def __init__(self, **kwargs):
    super(DetectionBenchmarkBase, self).__init__(**kwargs)
    self.timer_callback = None

  def _report_benchmark(self, stats, start_time_sec, wall_time_sec, min_ap,
                        max_ap, warmup):
56
57
58
59
    """Report benchmark results by writing to local protobuf file.

    Args:
      stats: dict returned from Detection models with known entries.
Jose Baiocchi's avatar
Jose Baiocchi committed
60
61
      start_time_sec: the start of the benchmark execution in seconds
      wall_time_sec: the duration of the benchmark execution in seconds
62
63
64
65
      min_ap: Minimum detection AP constraint to verify correctness of the
        model.
      max_ap: Maximum detection AP accuracy constraint to verify correctness of
        the model.
Jose Baiocchi's avatar
Jose Baiocchi committed
66
      warmup: Number of time log entries to ignore when computing examples/sec.
67
68
69
70
71
72
73
    """
    metrics = [{
        'name': 'total_loss',
        'value': stats['total_loss'],
    }]
    if self.timer_callback:
      metrics.append({
74
          'name': 'exp_per_second',
Jose Baiocchi's avatar
Jose Baiocchi committed
75
76
77
78
79
          'value': self.timer_callback.get_examples_per_sec(warmup)
      })
      metrics.append({
          'name': 'startup_time',
          'value': self.timer_callback.get_startup_time(start_time_sec)
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
      })
    else:
      metrics.append({
          'name': 'exp_per_second',
          'value': 0.0,
      })

    if 'eval_metrics' in stats:
      metrics.append({
          'name': 'AP',
          'value': stats['AP'],
          'min_value': min_ap,
          'max_value': max_ap,
      })
    flags_str = flags_core.get_nondefault_flags_as_str()
    self.report_benchmark(
        iters=stats['total_steps'],
        wall_time=wall_time_sec,
        metrics=metrics,
        extras={'flags': flags_str})


class RetinanetBenchmarkBase(DetectionBenchmarkBase):
  """Base class to hold methods common to test classes in the module."""

Jose Baiocchi's avatar
Jose Baiocchi committed
105
  def __init__(self, **kwargs):
106
107
108
109
    self.train_data_path = COCO_TRAIN_DATA
    self.eval_data_path = COCO_EVAL_DATA
    self.eval_json_path = COCO_EVAL_JSON
    self.resnet_checkpoint_path = RESNET_CHECKPOINT_PATH
Jose Baiocchi's avatar
Jose Baiocchi committed
110
    super(RetinanetBenchmarkBase, self).__init__(**kwargs)
111
112
113

  def _run_detection_main(self):
    """Starts detection job."""
Yeqing Li's avatar
Yeqing Li committed
114
    if self.timer_callback:
Jose Baiocchi's avatar
Jose Baiocchi committed
115
      FLAGS.log_steps = 0  # prevent detection.run from adding the same callback
Yeqing Li's avatar
Yeqing Li committed
116
117
118
      return detection.run(callbacks=[self.timer_callback])
    else:
      return detection.run()
119
120
121
122
123
124
125
126
127
128


class RetinanetAccuracy(RetinanetBenchmarkBase):
  """Accuracy test for RetinaNet model.

  Tests RetinaNet detection task model accuracy. The naming
  convention of below test cases follow
  `benchmark_(number of gpus)_gpu_(dataset type)` format.
  """

129
  @benchmark_wrappers.enable_runtime_flags
Jose Baiocchi's avatar
Jose Baiocchi committed
130
131
132
133
134
135
  def _run_and_report_benchmark(self,
                                params,
                                min_ap=0.325,
                                max_ap=0.35,
                                do_eval=True,
                                warmup=1):
136
    """Starts RetinaNet accuracy benchmark test."""
Jose Baiocchi's avatar
Jose Baiocchi committed
137
138
    FLAGS.params_override = json.dumps(params)
    # Need timer callback to measure performance
Hongkun Yu's avatar
Hongkun Yu committed
139
    self.timer_callback = keras_utils.TimeHistory(
Jose Baiocchi's avatar
Jose Baiocchi committed
140
141
142
        batch_size=params['train']['batch_size'],
        log_steps=FLAGS.log_steps,
    )
143
144
145
146
147
148

    start_time_sec = time.time()
    FLAGS.mode = 'train'
    summary, _ = self._run_detection_main()
    wall_time_sec = time.time() - start_time_sec

Jose Baiocchi's avatar
Jose Baiocchi committed
149
150
151
152
    if do_eval:
      FLAGS.mode = 'eval'
      eval_metrics = self._run_detection_main()
      summary.update(eval_metrics)
153

Jose Baiocchi's avatar
Jose Baiocchi committed
154
155
156
    summary['total_steps'] = params['train']['total_steps']
    self._report_benchmark(summary, start_time_sec, wall_time_sec, min_ap,
                           max_ap, warmup)
157
158
159
160
161

  def _setup(self):
    super(RetinanetAccuracy, self)._setup()
    FLAGS.model = 'retinanet'

Jose Baiocchi's avatar
Jose Baiocchi committed
162
163
  def _params(self):
    return {
Pengchong Jin's avatar
Pengchong Jin committed
164
165
166
        'architecture': {
            'use_bfloat16': True,
        },
167
168
169
170
171
        'train': {
            'batch_size': 64,
            'iterations_per_loop': 100,
            'total_steps': 22500,
            'train_file_pattern': self.train_data_path,
Yeqing Li's avatar
Yeqing Li committed
172
173
174
175
            'checkpoint': {
                'path': self.resnet_checkpoint_path,
                'prefix': 'resnet50/'
            },
Jose Baiocchi's avatar
Jose Baiocchi committed
176
177
            # Speed up ResNet training when loading from the checkpoint.
            'frozen_variable_prefix': base_config.RESNET_FROZEN_VAR_PREFIX,
178
179
180
181
182
183
184
185
186
187
188
189
190
        },
        'eval': {
            'batch_size': 8,
            'eval_samples': 5000,
            'val_json_file': self.eval_json_path,
            'eval_file_pattern': self.eval_data_path,
        },
    }

  @flagsaver.flagsaver
  def benchmark_8_gpu_coco(self):
    """Run RetinaNet model accuracy test with 8 GPUs."""
    self._setup()
Jose Baiocchi's avatar
Jose Baiocchi committed
191
192
    params = self._params()
    FLAGS.num_gpus = 8
193
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_coco')
Jose Baiocchi's avatar
Jose Baiocchi committed
194
195
    FLAGS.strategy_type = 'mirrored'
    self._run_and_report_benchmark(params)
196
197
198
199
200
201
202
203
204
205


class RetinanetBenchmarkReal(RetinanetAccuracy):
  """Short benchmark performance tests for RetinaNet model.

  Tests RetinaNet performance in different GPU configurations.
  The naming convention of below test cases follow
  `benchmark_(number of gpus)_gpu` format.
  """

Jose Baiocchi's avatar
Jose Baiocchi committed
206
207
208
209
  def _setup(self):
    super(RetinanetBenchmarkReal, self)._setup()
    # Use negative value to avoid saving checkpoints.
    FLAGS.save_checkpoint_freq = -1
210
211
212
213
214

  @flagsaver.flagsaver
  def benchmark_8_gpu_coco(self):
    """Run RetinaNet model accuracy test with 8 GPUs."""
    self._setup()
Jose Baiocchi's avatar
Jose Baiocchi committed
215
    params = self._params()
Pengchong Jin's avatar
Pengchong Jin committed
216
    params['architecture']['use_bfloat16'] = False
David Chen's avatar
David Chen committed
217
    params['train']['total_steps'] = 1875  # One epoch.
Yeqing Li's avatar
Yeqing Li committed
218
219
220
221
222
223
224
    # The iterations_per_loop must be one, otherwise the number of examples per
    # second would be wrong. Currently only support calling callback per batch
    # when each loop only runs on one batch, i.e. host loop for one step. The
    # performance of this situation might be lower than the case of
    # iterations_per_loop > 1.
    # Related bug: b/135933080
    params['train']['iterations_per_loop'] = 1
225
    params['eval']['eval_samples'] = 8
Jose Baiocchi's avatar
Jose Baiocchi committed
226
    FLAGS.num_gpus = 8
227
    FLAGS.model_dir = self._get_model_dir('real_benchmark_8_gpu_coco')
Jose Baiocchi's avatar
Jose Baiocchi committed
228
229
    FLAGS.strategy_type = 'mirrored'
    self._run_and_report_benchmark(params)
230

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
231
232
233
234
  @flagsaver.flagsaver
  def benchmark_1_gpu_coco(self):
    """Run RetinaNet model accuracy test with 1 GPU."""
    self._setup()
Jose Baiocchi's avatar
Jose Baiocchi committed
235
    params = self._params()
Pengchong Jin's avatar
Pengchong Jin committed
236
    params['architecture']['use_bfloat16'] = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
237
238
239
240
    params['train']['batch_size'] = 8
    params['train']['total_steps'] = 200
    params['train']['iterations_per_loop'] = 1
    params['eval']['eval_samples'] = 8
Jose Baiocchi's avatar
Jose Baiocchi committed
241
    FLAGS.num_gpus = 1
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
242
    FLAGS.model_dir = self._get_model_dir('real_benchmark_1_gpu_coco')
Yeqing Li's avatar
Yeqing Li committed
243
    FLAGS.strategy_type = 'one_device'
Jose Baiocchi's avatar
Jose Baiocchi committed
244
    self._run_and_report_benchmark(params)
245

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
246
247
248
249
  @flagsaver.flagsaver
  def benchmark_xla_1_gpu_coco(self):
    """Run RetinaNet model accuracy test with 1 GPU and XLA enabled."""
    self._setup()
Jose Baiocchi's avatar
Jose Baiocchi committed
250
    params = self._params()
Pengchong Jin's avatar
Pengchong Jin committed
251
    params['architecture']['use_bfloat16'] = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
252
253
254
255
    params['train']['batch_size'] = 8
    params['train']['total_steps'] = 200
    params['train']['iterations_per_loop'] = 1
    params['eval']['eval_samples'] = 8
Jose Baiocchi's avatar
Jose Baiocchi committed
256
257
    FLAGS.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('real_benchmark_xla_1_gpu_coco')
Yeqing Li's avatar
Yeqing Li committed
258
    FLAGS.strategy_type = 'one_device'
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
259
    FLAGS.enable_xla = True
Jose Baiocchi's avatar
Jose Baiocchi committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    self._run_and_report_benchmark(params)

  @flagsaver.flagsaver
  def benchmark_2x2_tpu_coco(self):
    """Run RetinaNet model accuracy test with 4 TPUs."""
    self._setup()
    params = self._params()
    params['train']['batch_size'] = 64
    params['train']['total_steps'] = 1875  # One epoch.
    params['train']['iterations_per_loop'] = 500
    FLAGS.model_dir = self._get_model_dir('real_benchmark_2x2_tpu_coco')
    FLAGS.strategy_type = 'tpu'
    self._run_and_report_benchmark(params, do_eval=False, warmup=0)

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
  @flagsaver.flagsaver
  def benchmark_2x2_tpu_spinenet_coco(self):
    """Run SpineNet with RetinaNet model accuracy test with 4 TPUs."""
    self._setup()
    params = self._params()
    params['architecture']['backbone'] = 'spinenet'
    params['architecture']['multilevel_features'] = 'identity'
    params['architecture']['use_bfloat16'] = False
    params['train']['batch_size'] = 64
    params['train']['total_steps'] = 1875  # One epoch.
    params['train']['iterations_per_loop'] = 500
    params['train']['checkpoint']['path'] = ''
    FLAGS.model_dir = self._get_model_dir(
        'real_benchmark_2x2_tpu_spinenet_coco')
    FLAGS.strategy_type = 'tpu'
    self._run_and_report_benchmark(params, do_eval=False, warmup=0)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
291

292
293
if __name__ == '__main__':
  tf.test.main()