backbones.py 3.45 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14
15

# Lint as: python3
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16
"""Backbones configurations."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
17
from typing import Optional, List
Abdullah Rashwan's avatar
Abdullah Rashwan committed
18
19
20
21
22
23
24
25
26
27
28

# Import libraries
import dataclasses

from official.modeling import hyperparams


@dataclasses.dataclass
class ResNet(hyperparams.Config):
  """ResNet config."""
  model_id: int = 50
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
29
  depth_multiplier: float = 1.0
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
30
31
  stem_type: str = 'v0'
  se_ratio: float = 0.0
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
32
  stochastic_depth_drop_rate: float = 0.0
Xianzhi Du's avatar
Xianzhi Du committed
33
  scale_stem: bool = True
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
34
35
  resnetd_shortcut: bool = False
  replace_stem_max_pool: bool = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
36
  bn_trainable: bool = True
Abdullah Rashwan's avatar
Abdullah Rashwan committed
37
38


Abdullah Rashwan's avatar
Abdullah Rashwan committed
39
40
41
42
43
@dataclasses.dataclass
class DilatedResNet(hyperparams.Config):
  """DilatedResNet config."""
  model_id: int = 50
  output_stride: int = 16
Abdullah Rashwan's avatar
Abdullah Rashwan committed
44
45
46
  multigrid: Optional[List[int]] = None
  stem_type: str = 'v0'
  last_stage_repeats: int = 1
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
47
48
  se_ratio: float = 0.0
  stochastic_depth_drop_rate: float = 0.0
Abdullah Rashwan's avatar
Abdullah Rashwan committed
49
50


Abdullah Rashwan's avatar
Abdullah Rashwan committed
51
52
53
54
55
@dataclasses.dataclass
class EfficientNet(hyperparams.Config):
  """EfficientNet config."""
  model_id: str = 'b0'
  se_ratio: float = 0.0
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
56
  stochastic_depth_drop_rate: float = 0.0
Abdullah Rashwan's avatar
Abdullah Rashwan committed
57
58


59
60
61
62
@dataclasses.dataclass
class MobileNet(hyperparams.Config):
  """Mobilenet config."""
  model_id: str = 'MobileNetV2'
63
  filter_size_scale: float = 1.0
64
65
66
  stochastic_depth_drop_rate: float = 0.0


Abdullah Rashwan's avatar
Abdullah Rashwan committed
67
68
69
70
@dataclasses.dataclass
class SpineNet(hyperparams.Config):
  """SpineNet config."""
  model_id: str = '49'
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
71
  stochastic_depth_drop_rate: float = 0.0
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
72
73
  min_level: int = 3
  max_level: int = 7
Abdullah Rashwan's avatar
Abdullah Rashwan committed
74
75


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
76
77
78
79
80
81
82
@dataclasses.dataclass
class SpineNetMobile(hyperparams.Config):
  """SpineNet config."""
  model_id: str = '49'
  stochastic_depth_drop_rate: float = 0.0
  se_ratio: float = 0.2
  expand_ratio: int = 6
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
83
84
  min_level: int = 3
  max_level: int = 7
85
86
87
88
89
  # If use_keras_upsampling_2d is True, model uses UpSampling2D keras layer
  # instead of optimized custom TF op. It makes model be more keras style. We
  # set this flag to True when we apply QAT from model optimization toolkit
  # that requires the model should use keras layers.
  use_keras_upsampling_2d: bool = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
90
91


Abdullah Rashwan's avatar
Abdullah Rashwan committed
92
93
94
95
96
97
98
99
100
101
102
103
@dataclasses.dataclass
class RevNet(hyperparams.Config):
  """RevNet config."""
  # Specifies the depth of RevNet.
  model_id: int = 56


@dataclasses.dataclass
class Backbone(hyperparams.OneOfConfig):
  """Configuration for backbones.

  Attributes:
Fan Yang's avatar
Fan Yang committed
104
    type: 'str', type of backbone be used, one of the fields below.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
105
    resnet: resnet backbone config.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
106
    dilated_resnet: dilated resnet backbone for semantic segmentation config.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
107
108
109
    revnet: revnet backbone config.
    efficientnet: efficientnet backbone config.
    spinenet: spinenet backbone config.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
110
    spinenet_mobile: mobile spinenet backbone config.
111
    mobilenet: mobilenet backbone config.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
112
113
114
  """
  type: Optional[str] = None
  resnet: ResNet = ResNet()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
115
  dilated_resnet: DilatedResNet = DilatedResNet()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
116
117
118
  revnet: RevNet = RevNet()
  efficientnet: EfficientNet = EfficientNet()
  spinenet: SpineNet = SpineNet()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
119
  spinenet_mobile: SpineNetMobile = SpineNetMobile()
120
  mobilenet: MobileNet = MobileNet()