backbones.py 3.43 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14
15

# Lint as: python3
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16
"""Backbones configurations."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
17
from typing import Optional, List
Abdullah Rashwan's avatar
Abdullah Rashwan committed
18
19
20
21
22
23
24
25
26
27
28

# Import libraries
import dataclasses

from official.modeling import hyperparams


@dataclasses.dataclass
class ResNet(hyperparams.Config):
  """ResNet config."""
  model_id: int = 50
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
29
  depth_multiplier: float = 1.0
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
30
31
  stem_type: str = 'v0'
  se_ratio: float = 0.0
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
32
  stochastic_depth_drop_rate: float = 0.0
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
33
34
  resnetd_shortcut: bool = False
  replace_stem_max_pool: bool = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
35
  bn_trainable: bool = True
Abdullah Rashwan's avatar
Abdullah Rashwan committed
36
37


Abdullah Rashwan's avatar
Abdullah Rashwan committed
38
39
40
41
42
@dataclasses.dataclass
class DilatedResNet(hyperparams.Config):
  """DilatedResNet config."""
  model_id: int = 50
  output_stride: int = 16
Abdullah Rashwan's avatar
Abdullah Rashwan committed
43
44
45
  multigrid: Optional[List[int]] = None
  stem_type: str = 'v0'
  last_stage_repeats: int = 1
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
46
47
  se_ratio: float = 0.0
  stochastic_depth_drop_rate: float = 0.0
Abdullah Rashwan's avatar
Abdullah Rashwan committed
48
49


Abdullah Rashwan's avatar
Abdullah Rashwan committed
50
51
52
53
54
@dataclasses.dataclass
class EfficientNet(hyperparams.Config):
  """EfficientNet config."""
  model_id: str = 'b0'
  se_ratio: float = 0.0
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
55
  stochastic_depth_drop_rate: float = 0.0
Abdullah Rashwan's avatar
Abdullah Rashwan committed
56
57


58
59
60
61
@dataclasses.dataclass
class MobileNet(hyperparams.Config):
  """Mobilenet config."""
  model_id: str = 'MobileNetV2'
62
  filter_size_scale: float = 1.0
63
64
65
  stochastic_depth_drop_rate: float = 0.0


Abdullah Rashwan's avatar
Abdullah Rashwan committed
66
67
68
69
@dataclasses.dataclass
class SpineNet(hyperparams.Config):
  """SpineNet config."""
  model_id: str = '49'
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
70
  stochastic_depth_drop_rate: float = 0.0
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
71
72
  min_level: int = 3
  max_level: int = 7
Abdullah Rashwan's avatar
Abdullah Rashwan committed
73
74


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
75
76
77
78
79
80
81
@dataclasses.dataclass
class SpineNetMobile(hyperparams.Config):
  """SpineNet config."""
  model_id: str = '49'
  stochastic_depth_drop_rate: float = 0.0
  se_ratio: float = 0.2
  expand_ratio: int = 6
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
82
83
  min_level: int = 3
  max_level: int = 7
84
85
86
87
88
  # If use_keras_upsampling_2d is True, model uses UpSampling2D keras layer
  # instead of optimized custom TF op. It makes model be more keras style. We
  # set this flag to True when we apply QAT from model optimization toolkit
  # that requires the model should use keras layers.
  use_keras_upsampling_2d: bool = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
89
90


Abdullah Rashwan's avatar
Abdullah Rashwan committed
91
92
93
94
95
96
97
98
99
100
101
102
@dataclasses.dataclass
class RevNet(hyperparams.Config):
  """RevNet config."""
  # Specifies the depth of RevNet.
  model_id: int = 56


@dataclasses.dataclass
class Backbone(hyperparams.OneOfConfig):
  """Configuration for backbones.

  Attributes:
Fan Yang's avatar
Fan Yang committed
103
    type: 'str', type of backbone be used, one of the fields below.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
104
    resnet: resnet backbone config.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
105
    dilated_resnet: dilated resnet backbone for semantic segmentation config.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
106
107
108
    revnet: revnet backbone config.
    efficientnet: efficientnet backbone config.
    spinenet: spinenet backbone config.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
109
    spinenet_mobile: mobile spinenet backbone config.
110
    mobilenet: mobilenet backbone config.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
111
112
113
  """
  type: Optional[str] = None
  resnet: ResNet = ResNet()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
114
  dilated_resnet: DilatedResNet = DilatedResNet()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
115
116
117
  revnet: RevNet = RevNet()
  efficientnet: EfficientNet = EfficientNet()
  spinenet: SpineNet = SpineNet()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
118
  spinenet_mobile: SpineNetMobile = SpineNetMobile()
119
  mobilenet: MobileNet = MobileNet()