keras_imagenet_benchmark.py 42 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Keras benchmarks and accuracy tests."""
from __future__ import print_function

import os
19
import time
20
21

from absl import flags
22
import tensorflow as tf  # pylint: disable=g-bad-import-order
23

Toby Boyd's avatar
Toby Boyd committed
24
from official.resnet.keras import keras_benchmark
25
26
from official.resnet.keras import keras_imagenet_main

Toby Boyd's avatar
Toby Boyd committed
27
28
MIN_TOP_1_ACCURACY = 0.76
MAX_TOP_1_ACCURACY = 0.77
29

Toby Boyd's avatar
Toby Boyd committed
30
FLAGS = flags.FLAGS
31
32


Toby Boyd's avatar
Toby Boyd committed
33
34
class Resnet50KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for ResNet50 in Keras."""
35

36
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
37
38
39
40
41
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
42
43
44
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
45
46
    """

Toby Boyd's avatar
Toby Boyd committed
47
    flag_methods = [keras_imagenet_main.define_imagenet_keras_flags]
Toby Boyd's avatar
Toby Boyd committed
48

49
    self.data_dir = os.path.join(root_data_dir, 'imagenet')
50
51
    super(Resnet50KerasAccuracy, self).__init__(
        output_dir=output_dir, flag_methods=flag_methods)
52

Toby Boyd's avatar
Toby Boyd committed
53
  def benchmark_graph_8_gpu(self):
54
55
    """Test Keras model with Keras fit/dist_strat and 8 GPUs."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
56
    FLAGS.num_gpus = 8
57
    FLAGS.data_dir = self.data_dir
58
    FLAGS.batch_size = 128 * 8
Toby Boyd's avatar
Toby Boyd committed
59
    FLAGS.train_epochs = 90
60
    FLAGS.epochs_between_evals = 10
61
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
62
    FLAGS.dtype = 'fp32'
63
    FLAGS.use_tensor_lr = True
64
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
65
66

  def benchmark_8_gpu(self):
67
68
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
69
    FLAGS.num_gpus = 8
70
    FLAGS.data_dir = self.data_dir
71
    FLAGS.batch_size = 128 * 8
Toby Boyd's avatar
Toby Boyd committed
72
    FLAGS.train_epochs = 90
73
    FLAGS.epochs_between_evals = 10
74
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
75
76
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
77
78
    # Add some thread tunings to improve performance.
    FLAGS.datasets_num_private_threads = 14
79
    FLAGS.use_tensor_lr = True
80
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
81

Reed's avatar
Reed committed
82
83
84
85
86
87
88
  def benchmark_8_gpu_fp16(self):
    """Test Keras model with eager, dist_strat, 8 GPUs, and fp16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 90
89
    FLAGS.epochs_between_evals = 10
Reed's avatar
Reed committed
90
91
92
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
93
94
    # Thread tuning to improve performance.
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
95
    FLAGS.use_tensor_lr = True
Reed's avatar
Reed committed
96
97
98
99
100
101
102
103
104
    self._run_and_report_benchmark()

  def benchmark_xla_8_gpu_fp16(self):
    """Test Keras model with XLA, eager, dist_strat, 8 GPUs and fp16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 90
105
    FLAGS.epochs_between_evals = 10
Reed's avatar
Reed committed
106
107
108
109
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
110
111
    # Thread tuning to improve performance.
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
112
    FLAGS.use_tensor_lr = True
Reed's avatar
Reed committed
113
114
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
  def benchmark_8_gpu_mlperf_like_tweaked(self):
    """Test similar to the rules for MLPerf 0.5.

    Listed below are reasons this comparison is not to the MLSpec, but this is
    still a decent directional measurement:
      - Eval is every 4 epochs and again at the end. ~2 extra times.
      - Learning rate is not tuned to hit 75%, but we know the model is correct.
      - We measure total time and MLPerf 0.5 excluded some startup time.
      - Eval is not on the total set, need to set eval batch_size where
        8*batch_size/50K is even. 250 is a good number.
      - Not sure if we are doing any extra or too few steps due to epoch bleed.
    """
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 61
    FLAGS.epochs_between_evals = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_mlperf_like_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.use_tensor_lr = True
138
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
Toby Boyd's avatar
Toby Boyd committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    self._run_and_report_benchmark()

  def benchmark_8_gpu_mlperf_like(self):
    """Test similar to the rules for MLPerf 0.5.

    Listed below are reasons this comparison is not to the MLSpec, but this is
    still a decent directional measurement:
      - Eval is every 4 epochs and again at the end. ~2 extra times.
      - Learning rate is not tuned to hit 75%, but we know the model is correct.
      - We measure total time and MLPerf 0.5 excluded some startup time.
      - Eval is not on the total set, need to set eval batch_size where
        8*batch_size/50K is even. 250 is a good number.
      - Not sure if we are doing any extra or too few steps due to epoch bleed.
    """
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 61
    FLAGS.epochs_between_evals = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_mlperf_like')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    self._run_and_report_benchmark()

165
166
167
168
169
170
171
  def benchmark_xla_8_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, eager, dist_strat, 8 GPUs, dynamic fp16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 90
172
    FLAGS.epochs_between_evals = 10
173
174
175
176
177
178
179
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.loss_scale = 'dynamic'
    # Thread tuning to improve performance.
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
180
    FLAGS.use_tensor_lr = True
181
182
    self._run_and_report_benchmark()

183
184
185
186
187
188
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
    stats = keras_imagenet_main.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

    super(Resnet50KerasAccuracy, self)._report_benchmark(
Toby Boyd's avatar
Toby Boyd committed
189
        stats,
190
        wall_time_sec,
Toby Boyd's avatar
Toby Boyd committed
191
192
        top_1_min=MIN_TOP_1_ACCURACY,
        top_1_max=MAX_TOP_1_ACCURACY,
193
        total_batch_size=FLAGS.batch_size,
Toby Boyd's avatar
Toby Boyd committed
194
        log_steps=100)
195
196
197
198

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)

Toby Boyd's avatar
Toby Boyd committed
199
200
201
202
203

class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Resnet50 benchmarks."""

  def __init__(self, output_dir=None, default_flags=None):
Toby Boyd's avatar
Toby Boyd committed
204
    flag_methods = [keras_imagenet_main.define_imagenet_keras_flags]
Toby Boyd's avatar
Toby Boyd committed
205
206
207
208
209
210

    super(Resnet50KerasBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags)

211
212
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
Toby Boyd's avatar
Toby Boyd committed
213
    stats = keras_imagenet_main.run(FLAGS)
214
    wall_time_sec = time.time() - start_time_sec
215
216
217
    # Number of logged step time entries that are excluded in performance
    # report. We keep results from last 100 batches in this case.
    warmup = (FLAGS.train_steps - 100) // FLAGS.log_steps
218
219
220
221
222

    super(Resnet50KerasBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
223
224
        log_steps=FLAGS.log_steps,
        warmup=warmup)
Toby Boyd's avatar
Toby Boyd committed
225
226

  def benchmark_1_gpu_no_dist_strat(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
227
    """Test Keras model with 1 GPU, no distribution strategy."""
Toby Boyd's avatar
Toby Boyd committed
228
229
230
231
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
232
    FLAGS.distribution_strategy = 'off'
233
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
234
    FLAGS.batch_size = 128
235
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
236

237
238
239
240
241
242
243
244
245
246
247
248
249
  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly')
    FLAGS.batch_size = 64
    self._run_and_report_benchmark()

250
251
252
253
254
255
256
257
258
259
260
261
262
263
  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
264
  def benchmark_graph_1_gpu_no_dist_strat(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
265
    """Test Keras model in legacy graph mode with 1 GPU, no dist strat."""
Toby Boyd's avatar
Toby Boyd committed
266
267
268
269
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
270
    FLAGS.distribution_strategy = 'off'
271
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
272
273
    FLAGS.batch_size = 96  # BatchNorm is less efficient in legacy graph mode
                           # due to its reliance on v1 cond.
274
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
275
276

  def benchmark_1_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
277
    """Test Keras model with 1 GPU."""
Toby Boyd's avatar
Toby Boyd committed
278
279
280
281
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
282
    FLAGS.distribution_strategy = 'default'
283
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
284
    FLAGS.batch_size = 128
285
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
286

287
288
289
290
291
292
293
294
295
296
297
298
  def benchmark_1_gpu_layout_off(self):
    """Test Keras model with 1 GPU and no layout optimizer."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_layout_off')
    FLAGS.batch_size = 128
    FLAGS.enable_grappler_layout_optimizer = False
    self._run_and_report_benchmark()

Haoyu Zhang's avatar
Haoyu Zhang committed
299
300
301
302
303
304
305
306
307
308
309
310
  def benchmark_xla_1_gpu(self):
    """Test Keras model with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

311
312
313
314
315
316
317
318
319
320
321
322
  def benchmark_xla_1_gpu_layout_off(self):
    """Test Keras model with 1 GPU and xla w/no layout optimizer."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_layout_off')
    FLAGS.batch_size = 128
    FLAGS.enable_grappler_layout_optimizer = False
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
323
  def benchmark_1_gpu_fp16(self):
324
    """Test Keras model with 1 GPU and fp16."""
Reed's avatar
Reed committed
325
326
327
328
329
330
331
332
333
334
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

335
336
337
338
339
340
341
342
343
344
345
346
347
348
  def benchmark_1_gpu_fp16_layout_off(self):
    """Test Keras model with 1 GPU and FP16 w/no layout optimizer."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_layout_off')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.enable_grappler_layout_optimizer = False
    FLAGS.data_format = 'channels_last'
    self._run_and_report_benchmark()

349
350
351
352
353
354
355
356
357
358
359
360
361
  def benchmark_1_gpu_fp16_dynamic(self):
    """Test Keras model with 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
362
363
364
365
366
367
368
369
370
371
372
373
374
  def benchmark_xla_1_gpu_fp16(self):
    """Test Keras model with XLA, 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
  def benchmark_xla_1_gpu_fp16_layout_off(self):
    """Test Keras model with FP16+XLA w/no layout optimizer."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_layout_off')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.enable_grappler_layout_optimizer = False
    FLAGS.data_format = 'channels_last'
    self._run_and_report_benchmark()

390
391
392
393
394
395
396
397
398
399
400
  def benchmark_xla_1_gpu_fp16_tweaked(self):
    """Test Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
401
    FLAGS.use_tensor_lr = True
402
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
403
404
405
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_fp16_slack(self):
406
    """Test Keras model tf.data's experimental_slack functionality."""
407
408
409
410
411
412
413
414
415
416
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_slack')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.tf_data_experimental_slack = True
417
418
    self._run_and_report_benchmark()

419
420
421
422
423
424
425
426
427
428
429
430
431
432
  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
433
  def benchmark_graph_1_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
434
    """Test Keras model in legacy graph mode with 1 GPU."""
Toby Boyd's avatar
Toby Boyd committed
435
436
437
438
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
439
    FLAGS.distribution_strategy = 'default'
440
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
441
    FLAGS.batch_size = 128
442
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
443

Haoyu Zhang's avatar
Haoyu Zhang committed
444
445
446
447
448
449
450
451
452
453
454
455
  def benchmark_graph_xla_1_gpu(self):
    """Test Keras model in legacy graph mode with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

456
457
458
459
460
  def benchmark_graph_1_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
461
    FLAGS.dtype = 'fp16'
462
463
464
465
466
467
468
469
470
471
472
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_fp16')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

  def benchmark_graph_xla_1_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 1 GPU, fp16 and XLA."""
    self._setup()

    FLAGS.num_gpus = 1
473
    FLAGS.dtype = 'fp16'
474
475
476
477
478
479
480
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_1_gpu_fp16')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

481
  def benchmark_graph_xla_1_gpu_fp16_tweaked(self):
482
    """Test Keras model in legacy graph with 1 GPU, fp16, XLA, and tuning."""
483
484
485
486
487
488
489
490
491
492
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
493
    FLAGS.use_tensor_lr = True
494
495
496
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

497
  def benchmark_graph_xla_1_gpu_fp16_slack(self):
498
    """Test model in legacy graph with tf.data's experimental_slack."""
499
500
501
502
503
504
505
506
507
508
509
510
511
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_1_gpu_fp16_slack')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.tf_data_experimental_slack = True
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
512
  def benchmark_8_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
513
    """Test Keras model with 8 GPUs."""
Toby Boyd's avatar
Toby Boyd committed
514
515
516
517
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
518
    FLAGS.distribution_strategy = 'default'
519
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
520
    FLAGS.batch_size = 128 * 8  # 8 GPUs
521
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
522

523
524
  def benchmark_8_gpu_cloning(self):
    """Test Keras model with 8 GPUs and cloning."""
525
526
527
528
529
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
530
531
    FLAGS.clone_model_in_keras_dist_strat = True
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_cloning')
532
533
534
    FLAGS.batch_size = 128 * 8  # 8 GPUs
    self._run_and_report_benchmark()

535
  def benchmark_8_gpu_tweaked(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
536
    """Test Keras model with manual config tuning and 8 GPUs."""
537
538
539
540
541
542
543
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked')
    FLAGS.batch_size = 128 * 8  # 8 GPUs
544
    FLAGS.use_tensor_lr = True
545
    FLAGS.datasets_num_private_threads = 14
546
547
548
549
550
551
552
553
554
555
556
557
    self._run_and_report_benchmark()

  def benchmark_8_gpu_slack(self):
    """Test Keras model with tf.data's experimental_slack and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_slack')
    FLAGS.batch_size = 128 * 8  # 8 GPUs
    FLAGS.tf_data_experimental_slack = True
558
559
    self._run_and_report_benchmark()

Haoyu Zhang's avatar
Haoyu Zhang committed
560
561
562
563
564
565
566
567
568
  def benchmark_xla_8_gpu(self):
    """Test Keras model with XLA and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu')
569
    FLAGS.batch_size = 128 * 8  # 8 GPUs
Haoyu Zhang's avatar
Haoyu Zhang committed
570
571
    self._run_and_report_benchmark()

572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
  def benchmark_xla_8_gpu_tweaked(self):
    """Test Keras model with manual config tuning, 8 GPUs, and XLA."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_tweaked')
    FLAGS.batch_size = 128 * 8
    FLAGS.use_tensor_lr = True
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 24
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
587
  def benchmark_8_gpu_fp16(self):
588
    """Test Keras model with 8 GPUs and fp16."""
Reed's avatar
Reed committed
589
590
591
    self._setup()

    FLAGS.num_gpus = 8
592
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
593
594
595
596
597
598
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

599
600
601
602
603
604
605
606
607
608
609
610
611
612
  def benchmark_8_gpu_fp16_layout_off(self):
    """Test Keras model with 8 GPUs, fp16, and layout off."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16_layout_off')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.enable_grappler_layout_optimizer = False
    FLAGS.data_format = 'channels_last'
    self._run_and_report_benchmark()

613
614
615
616
617
618
619
620
621
622
623
624
625
  def benchmark_8_gpu_fp16_cloning(self):
    """Test Keras model with 8 GPUs, fp16 and cloning."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.clone_model_in_keras_dist_strat = True
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16_cloning')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

626
  def benchmark_8_gpu_fp16_tweaked(self):
627
    """Test Keras model with 8 GPUs, fp16, and manual config tuning."""
628
629
630
631
632
633
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
634
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16_tweaked')
635
    FLAGS.batch_size = 256 * 8  # 8 GPUs
636
    FLAGS.use_tensor_lr = True
637
638
639
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
  def benchmark_8_gpu_fp16_tweaked_layout_off(self):
    """Test Keras model with 8 GPUs, fp16,tuning, and layout off."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_fp16_tweaked_layout_off')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.use_tensor_lr = True
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.data_delay_prefetch = True
    FLAGS.enable_grappler_layout_optimizer = False
    FLAGS.data_format = 'channels_last'
    self._run_and_report_benchmark()

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
  def benchmark_8_gpu_fp16_cloning_tweaked(self):
    """Test Keras model with 8 GPUs, fp16, cloning, and manual config tuning."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.clone_model_in_keras_dist_strat = True
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_fp16_cloning_tweaked')
    FLAGS.batch_size = 256 * 8
    FLAGS.use_tensor_lr = True
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.data_delay_prefetch = True
    self._run_and_report_benchmark()

675
  def benchmark_8_gpu_fp16_dynamic_tweaked(self):
Toby Boyd's avatar
Toby Boyd committed
676
    """Test Keras model with 8 GPUs, fp16, dynamic loss scaling, and tuned."""
677
678
679
680
681
682
683
684
685
686
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
687
    FLAGS.use_tensor_lr = True
688
689
690
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

rxsang's avatar
rxsang committed
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
  def benchmark_xla_8_gpu_fp16_optional_next(self):
    """Test Keras model with XLA, 8 GPUs and fp16.

    This test also enables get_next_as_optional.
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_optional_next')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.enable_get_next_as_optional = True
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
709
  def benchmark_xla_8_gpu_fp16(self):
710
    """Test Keras model with XLA, 8 GPUs and fp16."""
Reed's avatar
Reed committed
711
712
713
    self._setup()

    FLAGS.num_gpus = 8
714
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
715
716
717
718
719
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
720
721
    self._run_and_report_benchmark()

722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
  def benchmark_xla_8_gpu_fp16_layout_off(self):
    """Test Keras model with XLA, 8 GPUs, fp16, and layout off."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_layout_off')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.enable_grappler_layout_optimizer = False
    FLAGS.data_format = 'channels_last'
    self._run_and_report_benchmark()

737
738
739
740
741
742
743
744
745
746
747
748
  def benchmark_xla_8_gpu_fp16_cloning(self):
    """Test Keras model with XLA, 8 GPUs, fp16 and cloning."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.clone_model_in_keras_dist_strat = True
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_cloning')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
Reed's avatar
Reed committed
749
750
    self._run_and_report_benchmark()

751
752
753
754
755
756
757
758
759
760
761
  def benchmark_xla_8_gpu_fp16_tweaked(self):
    """Test Keras model with manual config tuning, XLA, 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
762
    FLAGS.use_tensor_lr = True
763
764
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 48
765
766
    self._run_and_report_benchmark()

767
  def benchmark_xla_8_gpu_fp16_cloning_tweaked(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
768
    """Test with manual config tuning, XLA, 8 GPUs, fp16, and cloning."""
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.clone_model_in_keras_dist_strat = True
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_cloning_tweaked')
    FLAGS.batch_size = 256 * 8
    FLAGS.use_tensor_lr = True
    # FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.data_delay_prefetch = True
    self._run_and_report_benchmark()

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
  def benchmark_xla_8_gpu_fp16_cloning_tweaked_layout_off(self):
    """Test with tuning, FP16+XLA, cloning, and layout_off."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.clone_model_in_keras_dist_strat = True
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_cloning_tweaked_layout_off')
    FLAGS.batch_size = 256 * 8
    FLAGS.use_tensor_lr = True
    FLAGS.enable_grappler_layout_optimizer = False
    FLAGS.data_format = 'channels_last'
    self._run_and_report_benchmark()

rxsang's avatar
rxsang committed
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
  def benchmark_xla_8_gpu_fp16_cloning_tweaked_optional_next(self):
    """Test with manual config tuning, XLA, 8 GPUs, fp16, and cloning.

    This test also enables get_next_as_optional.
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.clone_model_in_keras_dist_strat = True
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_cloning_tweaked_optional_next')
    FLAGS.batch_size = 256 * 8
    FLAGS.use_tensor_lr = True
    # FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.data_delay_prefetch = True
    FLAGS.enable_get_next_as_optional = True
    self._run_and_report_benchmark()

825
  def benchmark_xla_8_gpu_fp16_tweaked_delay_measure(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
826
827
828
    """Test with manual config tuning, XLA, 8 GPUs and fp16.

    Delay performance measurement for stable performance on 96 vCPU platforms.
829
830
831
832
833
834
835
836
837
838
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_tweaked_delay_measure')
839
    FLAGS.batch_size = 256 * 8
840
841
842
843
844
    FLAGS.use_tensor_lr = True
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.train_steps = 310
    self._run_and_report_benchmark()

845
  def benchmark_xla_8_gpu_fp16_cloning_tweaked_delay_measure(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
846
847
848
    """Test with manual config tuning, XLA, 8 GPUs, fp16, and cloning.

    Delay performance measurement for stable performance on 96 vCPU platforms.
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.clone_model_in_keras_dist_strat = True
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_cloning_tweaked_delay_measure')
    FLAGS.batch_size = 256 * 8
    FLAGS.use_tensor_lr = True
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.data_delay_prefetch = True
    FLAGS.train_steps = 310
    self._run_and_report_benchmark()

867
  def benchmark_xla_8_gpu_fp16_tweaked_optional_next(self):
868
869
870
    """Test Keras model with manual config tuning, XLA, 8 GPUs, fp16.

    This test also enables get_next_as_optional.
871
872
873
874
875
876
877
878
879
880
881
882
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_tweaked_optional_next')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.use_tensor_lr = True
883
884
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 48
885
886
887
    FLAGS.enable_get_next_as_optional = True
    self._run_and_report_benchmark()

888
  def benchmark_xla_8_gpu_fp16_slack(self):
889
890
891
    """Test Keras model with XLA, 8 GPUs and fp16.

    This test also enable tf.data's experimental_slack functionality.
892
893
894
895
896
897
898
899
900
901
902
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_slack')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.tf_data_experimental_slack = True
903
904
    self._run_and_report_benchmark()

905
906
907
908
909
910
911
912
913
914
915
916
917
  def benchmark_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Test Keras model with config tuning, XLA, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
918
    FLAGS.use_tensor_lr = True
919
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
920
    FLAGS.datasets_num_private_threads = 48
921
922
    self._run_and_report_benchmark()

923
924
925
926
927
928
929
930
931
932
933
934
  def benchmark_xla_8_gpu_fp16_tensorboard_tweaked(self):
    """Test to track Tensorboard performance overhead."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_tensorboard_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
935
    FLAGS.use_tensor_lr = True
936
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
937
    FLAGS.datasets_num_private_threads = 48
938
939
940
    FLAGS.enable_tensorboard = True
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
941
  def benchmark_graph_8_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
942
    """Test Keras model in legacy graph mode with 8 GPUs."""
Toby Boyd's avatar
Toby Boyd committed
943
944
945
946
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
947
    FLAGS.distribution_strategy = 'default'
948
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
949
    FLAGS.batch_size = 128 * 8  # 8 GPUs
950
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
951

Haoyu Zhang's avatar
Haoyu Zhang committed
952
953
954
955
956
957
958
959
960
  def benchmark_graph_xla_8_gpu(self):
    """Test Keras model in legacy graph mode with XLA and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_8_gpu')
961
    FLAGS.batch_size = 128 * 8  # 8 GPUs
Haoyu Zhang's avatar
Haoyu Zhang committed
962
963
    self._run_and_report_benchmark()

964
965
966
967
968
969
970
971
972
973
974
975
  def benchmark_graph_8_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

976
977
978
979
980
981
982
983
984
985
986
987
988
  def benchmark_graph_xla_8_gpu_fp16(self):
    """Test Keras model in legacy graph mode with XLA, 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

989
  def benchmark_graph_8_gpu_fp16_tweaked(self):
990
    """Test Keras model in legacy graph mode, tuning, 8 GPUs, and FP16."""
991
992
993
994
995
996
997
998
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
999
    FLAGS.use_tensor_lr = True
1000
1001
1002
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

1003
  def benchmark_graph_xla_8_gpu_fp16_tweaked(self):
1004
    """Test Keras model in legacy graph tuning, XLA_FP16, 8 GPUs and fp16."""
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
1015
    FLAGS.use_tensor_lr = True
1016
1017
1018
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

1019
  def benchmark_graph_xla_8_gpu_fp16_tweaked_delay_measure(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
1020
1021
1022
    """Test in legacy graph mode with manual config tuning, XLA, 8 GPUs, fp16.

    Delay performance measurement for stable performance on 96 vCPU platforms.
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_tweaked_delay_measure')
    FLAGS.batch_size = 256 * 8
    FLAGS.use_tensor_lr = True
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.train_steps = 310
    self._run_and_report_benchmark()

1039
  def benchmark_graph_xla_8_gpu_fp16_tweaked_optional_next(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
1040
    """Test in legacy graph mode with manual config tuning, XLA, 8 GPUs, fp16.
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

    This test also enables get_next_as_optional.
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_tweaked_optional_next')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.use_tensor_lr = True
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.enable_get_next_as_optional = True
    self._run_and_report_benchmark()

1059
  def benchmark_graph_xla_8_gpu_fp16_slack(self):
1060
    """Test legacy graph mode with tf.data's experimental_slack."""
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_slack')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.tf_data_experimental_slack = True
    self._run_and_report_benchmark()

1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
  def benchmark_graph_8_gpu_fp16_dynamic_tweaked(self):
    """Test graph Keras with config tuning, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
1086
    FLAGS.use_tensor_lr = True
1087
1088
1089
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
  def benchmark_graph_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Test graph Keras with config tuning, XLA, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
1102
    FLAGS.use_tensor_lr = True
1103
1104
1105
1106
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
1107
1108
1109
1110
1111
1112
  def fill_report_object(self, stats):
    super(Resnet50KerasBenchmarkBase, self).fill_report_object(
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

Toby Boyd's avatar
Toby Boyd committed
1113
1114
1115
1116

class Resnet50KerasBenchmarkSynth(Resnet50KerasBenchmarkBase):
  """Resnet50 synthetic benchmark tests."""

1117
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
1118
1119
    def_flags = {}
    def_flags['skip_eval'] = True
1120
    def_flags['report_accuracy_metrics'] = False
Toby Boyd's avatar
Toby Boyd committed
1121
1122
1123
1124
    def_flags['use_synthetic_data'] = True
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

1125
1126
    super(Resnet50KerasBenchmarkSynth, self).__init__(
        output_dir=output_dir, default_flags=def_flags)
Toby Boyd's avatar
Toby Boyd committed
1127
1128
1129
1130
1131


class Resnet50KerasBenchmarkReal(Resnet50KerasBenchmarkBase):
  """Resnet50 real data benchmark tests."""

1132
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
1133
1134
    def_flags = {}
    def_flags['skip_eval'] = True
1135
    def_flags['report_accuracy_metrics'] = False
1136
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
Toby Boyd's avatar
Toby Boyd committed
1137
1138
1139
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

1140
1141
    super(Resnet50KerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags)
1142
1143


1144
class TrivialKerasBenchmarkReal(keras_benchmark.KerasBenchmark):
1145
1146
1147
  """Trivial model with real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
1148
1149
    flag_methods = [keras_imagenet_main.define_imagenet_keras_flags]

1150
    def_flags = {}
1151
    def_flags['use_trivial_model'] = True
1152
    def_flags['skip_eval'] = True
1153
    def_flags['report_accuracy_metrics'] = False
1154
    def_flags['use_tensor_lr'] = True
1155
1156
1157
1158
1159
1160
    def_flags['dtype'] = 'fp16'
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
    def_flags['train_steps'] = 600
    def_flags['log_steps'] = 100
    def_flags['distribution_strategy'] = 'default'

1161
    super(TrivialKerasBenchmarkReal, self).__init__(
1162
1163
1164
1165
1166
1167
1168
1169
1170
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=def_flags)

  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
    stats = keras_imagenet_main.run(FLAGS)
    wall_time_sec = time.time() - start_time_sec

1171
    super(TrivialKerasBenchmarkReal, self)._report_benchmark(
1172
1173
1174
1175
1176
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

1177
1178
1179
1180
1181
1182
1183
  def benchmark_8_gpu_warmup(self):
    """Dummy test that runs over an epoch to warmup the machine."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_warmup')
1184
    FLAGS.batch_size = 256 * 8
1185
1186
1187
    FLAGS.train_steps = 700
    self._run_and_report_benchmark()

1188
1189
1190
1191
1192
1193
  def benchmark_1_gpu(self):
    """Test trivial Keras model (input pipeline) with 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
1194
    FLAGS.enable_xla = True
1195
1196
1197
1198
1199
1200
1201
1202
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

  def benchmark_graph_1_gpu(self):
    """Test trivial Keras model (input pipeline) with 1 GPU."""
    self._setup()

1203
    FLAGS.num_gpus = 1
1204
    FLAGS.enable_eager = False
1205
    FLAGS.enable_xla = True
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

  def benchmark_8_gpu(self):
    """Test trivial Keras model (input pipeline) with 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
1216
    FLAGS.enable_xla = True
1217
1218
1219
1220
1221
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.batch_size = 256 * 8
    self._run_and_report_benchmark()

  def benchmark_8_gpu_tweaked(self):
1222
    """Test trivial Keras model with tuning and 8 GPUs."""
1223
1224
1225
1226
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
1227
    FLAGS.enable_xla = True
1228
1229
1230
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked')
    FLAGS.batch_size = 256 * 8
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1231
    FLAGS.datasets_num_private_threads = 48
1232
1233
1234
    self._run_and_report_benchmark()

  def benchmark_graph_8_gpu(self):
1235
    """Test trivial Keras model in legacy graph mode with 8 GPUs."""
1236
1237
1238
1239
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
1240
    FLAGS.enable_xla = True
1241
1242
1243
1244
1245
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
    FLAGS.batch_size = 256 * 8
    self._run_and_report_benchmark()

  def benchmark_graph_8_gpu_tweaked(self):
1246
    """Test trivial Keras model in legacy graph mode with tuning and 8 GPUs."""
1247
1248
1249
1250
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
1251
    FLAGS.enable_xla = True
1252
1253
1254
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu_tweaked')
    FLAGS.batch_size = 256 * 8
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1255
    FLAGS.datasets_num_private_threads = 48
1256
1257
1258
    self._run_and_report_benchmark()

  def fill_report_object(self, stats):
1259
    super(TrivialKerasBenchmarkReal, self).fill_report_object(
1260
1261
1262
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)
1263
1264
1265
1266


if __name__ == '__main__':
  tf.test.main()