keras_cifar_main.py 6.44 KB
Newer Older
Shining Sun's avatar
Shining Sun committed
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Shining Sun's avatar
Shining Sun committed
15
"""Runs a ResNet model on the Cifar-10 dataset."""
16
17
18
19
20
21
22
23
24
25

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from absl import app as absl_app
from absl import flags
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.resnet import cifar10_main as cifar_main
26
from official.resnet.keras import keras_common
Shining Sun's avatar
Shining Sun committed
27
from official.resnet.keras import resnet_cifar_model
28
29
30
31
32
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import distribution_utils


33
34
LR_SCHEDULE = [  # (multiplier, epoch to start) tuples
    (0.1, 91), (0.01, 136), (0.001, 182)
35
36
]

37

38
39
40
41
def learning_rate_schedule(current_epoch,
                           current_batch,
                           batches_per_epoch,
                           batch_size):
42
43
  """Handles linear scaling rule, gradual warmup, and LR decay.

44
45
  Scale learning rate at epoch boundaries provided in LR_SCHEDULE by the
  provided scaling factor.
46
47
48
49

  Args:
    current_epoch: integer, current epoch indexed from 0.
    current_batch: integer, current batch in the current epoch, indexed from 0.
50
51
    batches_per_epoch: integer, number of steps in an epoch.
    batch_size: integer, total batch sized.
52
53
54
55

  Returns:
    Adjusted learning rate.
  """
Shining Sun's avatar
Shining Sun committed
56
  initial_learning_rate = keras_common.BASE_LEARNING_RATE * batch_size / 128
57
  learning_rate = initial_learning_rate
58
  for mult, start_epoch in LR_SCHEDULE:
59
60
    if current_epoch >= start_epoch:
      learning_rate = initial_learning_rate * mult
61
62
63
64
65
66
67
68
69
70
71
    else:
      break
  return learning_rate


def parse_record_keras(raw_record, is_training, dtype):
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

Shining Sun's avatar
Shining Sun committed
72
  This method converts the label to one hot to fit the loss function.
73

74
75
76
77
78
79
80
81
82
83
  Args:
    raw_record: scalar Tensor tf.string containing a serialized
      Example protocol buffer.
    is_training: A boolean denoting whether the input is for training.
    dtype: Data type to use for input images.

  Returns:
    Tuple with processed image tensor and one-hot-encoded label tensor.
  """
  image, label = cifar_main.parse_record(raw_record, is_training, dtype)
84
  label = tf.sparse_to_dense(label, (cifar_main.NUM_CLASSES,), 1)
85
86
87
  return image, label


Shining Sun's avatar
Shining Sun committed
88
89
def run(flags_obj):
  """Run ResNet Cifar-10 training and eval loop using native Keras APIs.
90
91
92
93
94
95

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.
96
97
98

  Returns:
    Dictionary of training and eval stats.
99
  """
100
101
102
  if flags_obj.enable_eager:
    tf.enable_eager_execution()

103
104
105
106
107
108
109
110
111
  dtype = flags_core.get_tf_dtype(flags_obj)
  if dtype == 'fp16':
    raise ValueError('dtype fp16 is not supported in Keras. Use the default '
                     'value(fp32).')

  per_device_batch_size = distribution_utils.per_device_batch_size(
      flags_obj.batch_size, flags_core.get_num_gpus(flags_obj))

  if flags_obj.use_synthetic_data:
Shining Sun's avatar
Shining Sun committed
112
    input_fn = keras_common.get_synth_input_fn(
113
114
115
116
        height=cifar_main.HEIGHT,
        width=cifar_main.WIDTH,
        num_channels=cifar_main.NUM_CHANNELS,
        num_classes=cifar_main.NUM_CLASSES,
Shining Sun's avatar
Shining Sun committed
117
        dtype=flags_core.get_tf_dtype(flags_obj))
118
  else:
Shining Sun's avatar
Shining Sun committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    input_fn = cifar_main.input_fn

  train_input_dataset = input_fn(
      is_training=True,
      data_dir=flags_obj.data_dir,
      batch_size=per_device_batch_size,
      num_epochs=flags_obj.train_epochs,
      parse_record_fn=parse_record_keras)

  eval_input_dataset = input_fn(
      is_training=False,
      data_dir=flags_obj.data_dir,
      batch_size=per_device_batch_size,
      num_epochs=flags_obj.train_epochs,
      parse_record_fn=parse_record_keras)
134

Shining Sun's avatar
Shining Sun committed
135
  optimizer = keras_common.get_optimizer()
136
  strategy = distribution_utils.get_distribution_strategy(
137
      flags_obj.num_gpus, flags_obj.turn_off_distribution_strategy)
138

Shining Sun's avatar
Shining Sun committed
139
  model = resnet_cifar_model.resnet56(input_shape=(32, 32, 3),
140
                                      classes=cifar_main.NUM_CLASSES)
Shining Sun's avatar
Shining Sun committed
141
142
143
144

  model.compile(loss='categorical_crossentropy',
                optimizer=optimizer,
                metrics=['categorical_accuracy'],
Shining Sun's avatar
Shining Sun committed
145
                distribute=strategy)
Shining Sun's avatar
Shining Sun committed
146

147
148
  time_callback, tensorboard_callback, lr_callback = keras_common.get_callbacks(
      learning_rate_schedule, cifar_main.NUM_IMAGES['train'])
149

Shining Sun's avatar
Shining Sun committed
150
151
152
153
154
155
156
  train_steps = cifar_main.NUM_IMAGES['train'] // flags_obj.batch_size
  train_epochs = flags_obj.train_epochs

  if flags_obj.train_steps:
    train_steps = min(flags_obj.train_steps, train_steps)
    train_epochs = 1

157
  num_eval_steps = (cifar_main.NUM_IMAGES['validation'] //
158
159
                    flags_obj.batch_size)

Shining Sun's avatar
Shining Sun committed
160
161
162
163
164
  validation_data = eval_input_dataset
  if flags_obj.skip_eval:
    num_eval_steps = None
    validation_data = None

165
  history = model.fit(train_input_dataset,
166
167
168
169
170
171
172
173
174
175
176
                      epochs=train_epochs,
                      steps_per_epoch=train_steps,
                      callbacks=[
                          time_callback,
                          lr_callback,
                          tensorboard_callback
                      ],
                      validation_steps=num_eval_steps,
                      validation_data=validation_data,
                      verbose=1)
  eval_output = None
177
  if not flags_obj.skip_eval:
Shining Sun's avatar
Shining Sun committed
178
179
180
    eval_output = model.evaluate(eval_input_dataset,
                                 steps=num_eval_steps,
                                 verbose=1)
181
182
  stats = keras_common.build_stats(history, eval_output)
  return stats
183

184
185

def main(_):
186
  with logger.benchmark_context(flags.FLAGS):
Shining Sun's avatar
Shining Sun committed
187
    run(flags.FLAGS)
188
189
190


if __name__ == '__main__':
191
  tf.logging.set_verbosity(tf.logging.INFO)
192
  cifar_main.define_cifar_flags()
Shining Sun's avatar
Shining Sun committed
193
  keras_common.define_keras_flags()
194
  absl_app.run(main)