bert_models.py 13.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT models that are compatible with TF 2.0."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Hongkun Yu's avatar
Hongkun Yu committed
21
import gin
22
import tensorflow as tf
23
import tensorflow_hub as hub
24

25
from official.modeling import tf_utils
26
from official.nlp.albert import configs as albert_configs
27
from official.nlp.bert import configs
Chen Chen's avatar
Chen Chen committed
28
from official.nlp.modeling import losses
29
from official.nlp.modeling import models
Hongkun Yu's avatar
Hongkun Yu committed
30
from official.nlp.modeling import networks
31
32
33
34
35


class BertPretrainLossAndMetricLayer(tf.keras.layers.Layer):
  """Returns layer that computes custom loss and metrics for pretraining."""

Chen Chen's avatar
Chen Chen committed
36
  def __init__(self, vocab_size, **kwargs):
37
    super(BertPretrainLossAndMetricLayer, self).__init__(**kwargs)
Chen Chen's avatar
Chen Chen committed
38
39
40
41
    self._vocab_size = vocab_size
    self.config = {
        'vocab_size': vocab_size,
    }
42
43

  def _add_metrics(self, lm_output, lm_labels, lm_label_weights,
Chen Chen's avatar
Chen Chen committed
44
45
                   lm_example_loss, sentence_output, sentence_labels,
                   next_sentence_loss):
46
    """Adds metrics."""
47
48
    masked_lm_accuracy = tf.keras.metrics.sparse_categorical_accuracy(
        lm_labels, lm_output)
49
50
51
    numerator = tf.reduce_sum(masked_lm_accuracy * lm_label_weights)
    denominator = tf.reduce_sum(lm_label_weights) + 1e-5
    masked_lm_accuracy = numerator / denominator
52
53
54
55
56
57
58
59
60
61
62
63
64
    self.add_metric(
        masked_lm_accuracy, name='masked_lm_accuracy', aggregation='mean')

    self.add_metric(lm_example_loss, name='lm_example_loss', aggregation='mean')

    next_sentence_accuracy = tf.keras.metrics.sparse_categorical_accuracy(
        sentence_labels, sentence_output)
    self.add_metric(
        next_sentence_accuracy,
        name='next_sentence_accuracy',
        aggregation='mean')

    self.add_metric(
Chen Chen's avatar
Chen Chen committed
65
        next_sentence_loss, name='next_sentence_loss', aggregation='mean')
66

67
68
  def call(self, lm_output, sentence_output, lm_label_ids, lm_label_weights,
           sentence_labels):
69
    """Implements call() for the layer."""
70
    lm_label_weights = tf.cast(lm_label_weights, tf.float32)
71
72
    lm_output = tf.cast(lm_output, tf.float32)
    sentence_output = tf.cast(sentence_output, tf.float32)
Chen Chen's avatar
Chen Chen committed
73
74
75
76
77

    mask_label_loss = losses.weighted_sparse_categorical_crossentropy_loss(
        labels=lm_label_ids, predictions=lm_output, weights=lm_label_weights)
    sentence_loss = losses.weighted_sparse_categorical_crossentropy_loss(
        labels=sentence_labels, predictions=sentence_output)
78
    loss = mask_label_loss + sentence_loss
79
    batch_shape = tf.slice(tf.shape(sentence_labels), [0], [1])
80
    # TODO(hongkuny): Avoids the hack and switches add_loss.
Chen Chen's avatar
Chen Chen committed
81
    final_loss = tf.fill(batch_shape, loss)
82
83

    self._add_metrics(lm_output, lm_label_ids, lm_label_weights,
Chen Chen's avatar
Chen Chen committed
84
85
                      mask_label_loss, sentence_output, sentence_labels,
                      sentence_loss)
86
87
88
    return final_loss


Hongkun Yu's avatar
Hongkun Yu committed
89
90
91
92
@gin.configurable
def get_transformer_encoder(bert_config,
                            sequence_length,
                            transformer_encoder_cls=None):
93
94
95
  """Gets a 'TransformerEncoder' object.

  Args:
Chen Chen's avatar
Chen Chen committed
96
    bert_config: A 'modeling.BertConfig' or 'modeling.AlbertConfig' object.
97
    sequence_length: Maximum sequence length of the training data.
Hongkun Yu's avatar
Hongkun Yu committed
98
99
    transformer_encoder_cls: A EncoderScaffold class. If it is None, uses the
      default BERT encoder implementation.
100
101
102
103

  Returns:
    A networks.TransformerEncoder object.
  """
Hongkun Yu's avatar
Hongkun Yu committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
  if transformer_encoder_cls is not None:
    # TODO(hongkuny): evaluate if it is better to put cfg definition in gin.
    embedding_cfg = dict(
        vocab_size=bert_config.vocab_size,
        type_vocab_size=bert_config.type_vocab_size,
        hidden_size=bert_config.hidden_size,
        seq_length=sequence_length,
        max_seq_length=bert_config.max_position_embeddings,
        initializer=tf.keras.initializers.TruncatedNormal(
            stddev=bert_config.initializer_range),
        dropout_rate=bert_config.hidden_dropout_prob,
    )
    hidden_cfg = dict(
        num_attention_heads=bert_config.num_attention_heads,
        intermediate_size=bert_config.intermediate_size,
        intermediate_activation=tf_utils.get_activation(bert_config.hidden_act),
        dropout_rate=bert_config.hidden_dropout_prob,
        attention_dropout_rate=bert_config.attention_probs_dropout_prob,
    )
    kwargs = dict(embedding_cfg=embedding_cfg, hidden_cfg=hidden_cfg,
                  num_hidden_instances=bert_config.num_hidden_layers,)

    # Relies on gin configuration to define the Transformer encoder arguments.
    return transformer_encoder_cls(**kwargs)

Chen Chen's avatar
Chen Chen committed
129
  kwargs = dict(
130
131
132
133
134
      vocab_size=bert_config.vocab_size,
      hidden_size=bert_config.hidden_size,
      num_layers=bert_config.num_hidden_layers,
      num_attention_heads=bert_config.num_attention_heads,
      intermediate_size=bert_config.intermediate_size,
Chen Chen's avatar
Chen Chen committed
135
      activation=tf_utils.get_activation(bert_config.hidden_act),
136
137
138
139
140
141
      dropout_rate=bert_config.hidden_dropout_prob,
      attention_dropout_rate=bert_config.attention_probs_dropout_prob,
      sequence_length=sequence_length,
      max_sequence_length=bert_config.max_position_embeddings,
      type_vocab_size=bert_config.type_vocab_size,
      initializer=tf.keras.initializers.TruncatedNormal(
Zongwei Zhou's avatar
Zongwei Zhou committed
142
          stddev=bert_config.initializer_range))
143
  if isinstance(bert_config, albert_configs.AlbertConfig):
Chen Chen's avatar
Chen Chen committed
144
145
146
    kwargs['embedding_width'] = bert_config.embedding_size
    return networks.AlbertTransformerEncoder(**kwargs)
  else:
147
    assert isinstance(bert_config, configs.BertConfig)
Chen Chen's avatar
Chen Chen committed
148
    return networks.TransformerEncoder(**kwargs)
149
150


151
152
153
154
155
156
157
158
159
160
161
def pretrain_model(bert_config,
                   seq_length,
                   max_predictions_per_seq,
                   initializer=None):
  """Returns model to be used for pre-training.

  Args:
      bert_config: Configuration that defines the core BERT model.
      seq_length: Maximum sequence length of the training data.
      max_predictions_per_seq: Maximum number of tokens in sequence to mask out
        and use for pretraining.
Chen Chen's avatar
Chen Chen committed
162
      initializer: Initializer for weights in BertPretrainer.
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

  Returns:
      Pretraining model as well as core BERT submodel from which to save
      weights after pretraining.
  """
  input_word_ids = tf.keras.layers.Input(
      shape=(seq_length,), name='input_word_ids', dtype=tf.int32)
  input_mask = tf.keras.layers.Input(
      shape=(seq_length,), name='input_mask', dtype=tf.int32)
  input_type_ids = tf.keras.layers.Input(
      shape=(seq_length,), name='input_type_ids', dtype=tf.int32)
  masked_lm_positions = tf.keras.layers.Input(
      shape=(max_predictions_per_seq,),
      name='masked_lm_positions',
      dtype=tf.int32)
Chen Chen's avatar
Chen Chen committed
178
179
  masked_lm_ids = tf.keras.layers.Input(
      shape=(max_predictions_per_seq,), name='masked_lm_ids', dtype=tf.int32)
180
181
182
183
184
185
186
  masked_lm_weights = tf.keras.layers.Input(
      shape=(max_predictions_per_seq,),
      name='masked_lm_weights',
      dtype=tf.int32)
  next_sentence_labels = tf.keras.layers.Input(
      shape=(1,), name='next_sentence_labels', dtype=tf.int32)

Chen Chen's avatar
Chen Chen committed
187
  transformer_encoder = get_transformer_encoder(bert_config, seq_length)
Chen Chen's avatar
Chen Chen committed
188
189
190
  if initializer is None:
    initializer = tf.keras.initializers.TruncatedNormal(
        stddev=bert_config.initializer_range)
191
  pretrainer_model = models.BertPretrainer(
Chen Chen's avatar
Chen Chen committed
192
193
194
      network=transformer_encoder,
      num_classes=2,  # The next sentence prediction label has two classes.
      num_token_predictions=max_predictions_per_seq,
195
      initializer=initializer,
Chen Chen's avatar
Chen Chen committed
196
      output='predictions')
197

Chen Chen's avatar
Chen Chen committed
198
199
200
201
202
  lm_output, sentence_output = pretrainer_model(
      [input_word_ids, input_mask, input_type_ids, masked_lm_positions])

  pretrain_loss_layer = BertPretrainLossAndMetricLayer(
      vocab_size=bert_config.vocab_size)
203
204
  output_loss = pretrain_loss_layer(lm_output, sentence_output, masked_lm_ids,
                                    masked_lm_weights, next_sentence_labels)
Chen Chen's avatar
Chen Chen committed
205
  keras_model = tf.keras.Model(
206
207
208
209
210
211
212
213
214
      inputs={
          'input_word_ids': input_word_ids,
          'input_mask': input_mask,
          'input_type_ids': input_type_ids,
          'masked_lm_positions': masked_lm_positions,
          'masked_lm_ids': masked_lm_ids,
          'masked_lm_weights': masked_lm_weights,
          'next_sentence_labels': next_sentence_labels,
      },
Chen Chen's avatar
Chen Chen committed
215
216
      outputs=output_loss)
  return keras_model, transformer_encoder
217
218


Hongkun Yu's avatar
Hongkun Yu committed
219
220
221
def squad_model(bert_config,
                max_seq_length,
                initializer=None,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
222
223
                hub_module_url=None,
                hub_module_trainable=True):
224
225
226
227
228
  """Returns BERT Squad model along with core BERT model to import weights.

  Args:
    bert_config: BertConfig, the config defines the core Bert model.
    max_seq_length: integer, the maximum input sequence length.
Chen Chen's avatar
Chen Chen committed
229
230
    initializer: Initializer for the final dense layer in the span labeler.
      Defaulted to TruncatedNormal initializer.
Hongkun Yu's avatar
Hongkun Yu committed
231
    hub_module_url: TF-Hub path/url to Bert module.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
232
    hub_module_trainable: True to finetune layers in the hub module.
233
234

  Returns:
235
236
    A tuple of (1) keras model that outputs start logits and end logits and
    (2) the core BERT transformer encoder.
237
  """
Chen Chen's avatar
Chen Chen committed
238
239
240
  if initializer is None:
    initializer = tf.keras.initializers.TruncatedNormal(
        stddev=bert_config.initializer_range)
Chen Chen's avatar
Chen Chen committed
241
  if not hub_module_url:
Zongwei Zhou's avatar
Zongwei Zhou committed
242
    bert_encoder = get_transformer_encoder(bert_config, max_seq_length)
243
    return models.BertSpanLabeler(
Chen Chen's avatar
Chen Chen committed
244
        network=bert_encoder, initializer=initializer), bert_encoder
245

246
  input_word_ids = tf.keras.layers.Input(
247
      shape=(max_seq_length,), dtype=tf.int32, name='input_word_ids')
248
249
250
  input_mask = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_mask')
  input_type_ids = tf.keras.layers.Input(
251
      shape=(max_seq_length,), dtype=tf.int32, name='input_type_ids')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
252
  core_model = hub.KerasLayer(hub_module_url, trainable=hub_module_trainable)
253
  pooled_output, sequence_output = core_model(
Chen Chen's avatar
Chen Chen committed
254
      [input_word_ids, input_mask, input_type_ids])
255
  bert_encoder = tf.keras.Model(
256
      inputs={
257
          'input_word_ids': input_word_ids,
258
          'input_mask': input_mask,
259
          'input_type_ids': input_type_ids,
260
      },
261
262
      outputs=[sequence_output, pooled_output],
      name='core_model')
263
  return models.BertSpanLabeler(
264
      network=bert_encoder, initializer=initializer), bert_encoder
265
266
267
268
269


def classifier_model(bert_config,
                     num_labels,
                     max_seq_length,
270
                     final_layer_initializer=None,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
271
272
                     hub_module_url=None,
                     hub_module_trainable=True):
273
274
275
276
277
278
  """BERT classifier model in functional API style.

  Construct a Keras model for predicting `num_labels` outputs from an input with
  maximum sequence length `max_seq_length`.

  Args:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
279
280
    bert_config: BertConfig or AlbertConfig, the config defines the core BERT or
      ALBERT model.
281
282
283
284
    num_labels: integer, the number of classes.
    max_seq_length: integer, the maximum input sequence length.
    final_layer_initializer: Initializer for final dense layer. Defaulted
      TruncatedNormal initializer.
Hongkun Yu's avatar
Hongkun Yu committed
285
    hub_module_url: TF-Hub path/url to Bert module.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
286
    hub_module_trainable: True to finetune layers in the hub module.
287
288
289
290
291
292
293
294
295
296
297

  Returns:
    Combined prediction model (words, mask, type) -> (one-hot labels)
    BERT sub-model (words, mask, type) -> (bert_outputs)
  """
  if final_layer_initializer is not None:
    initializer = final_layer_initializer
  else:
    initializer = tf.keras.initializers.TruncatedNormal(
        stddev=bert_config.initializer_range)

Hongkun Yu's avatar
Hongkun Yu committed
298
  if not hub_module_url:
Chen Chen's avatar
Chen Chen committed
299
    bert_encoder = get_transformer_encoder(bert_config, max_seq_length)
300
    return models.BertClassifier(
Hongkun Yu's avatar
Hongkun Yu committed
301
302
303
304
305
306
307
308
309
310
311
        bert_encoder,
        num_classes=num_labels,
        dropout_rate=bert_config.hidden_dropout_prob,
        initializer=initializer), bert_encoder

  input_word_ids = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_word_ids')
  input_mask = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_mask')
  input_type_ids = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_type_ids')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
312
313
  bert_model = hub.KerasLayer(
      hub_module_url, trainable=hub_module_trainable)
Hongkun Yu's avatar
Hongkun Yu committed
314
  pooled_output, _ = bert_model([input_word_ids, input_mask, input_type_ids])
315
316
  output = tf.keras.layers.Dropout(rate=bert_config.hidden_dropout_prob)(
      pooled_output)
Hongkun Yu's avatar
Hongkun Yu committed
317

318
  output = tf.keras.layers.Dense(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
319
      num_labels, kernel_initializer=initializer, name='output')(
320
321
322
323
324
325
326
327
          output)
  return tf.keras.Model(
      inputs={
          'input_word_ids': input_word_ids,
          'input_mask': input_mask,
          'input_type_ids': input_type_ids
      },
      outputs=output), bert_model