bert_models.py 12.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT models that are compatible with TF 2.0."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
22
import tensorflow_hub as hub
23

24
from official.modeling import tf_utils
Chen Chen's avatar
Chen Chen committed
25
from official.nlp import bert_modeling
Chen Chen's avatar
Chen Chen committed
26
from official.nlp.modeling import losses
Hongkun Yu's avatar
Hongkun Yu committed
27
28
from official.nlp.modeling import networks
from official.nlp.modeling.networks import bert_classifier
Chen Chen's avatar
Chen Chen committed
29
from official.nlp.modeling.networks import bert_pretrainer
30
from official.nlp.modeling.networks import bert_span_labeler
31
32
33
34
35


class BertPretrainLossAndMetricLayer(tf.keras.layers.Layer):
  """Returns layer that computes custom loss and metrics for pretraining."""

Chen Chen's avatar
Chen Chen committed
36
  def __init__(self, vocab_size, **kwargs):
37
    super(BertPretrainLossAndMetricLayer, self).__init__(**kwargs)
Chen Chen's avatar
Chen Chen committed
38
39
40
41
    self._vocab_size = vocab_size
    self.config = {
        'vocab_size': vocab_size,
    }
42
43

  def _add_metrics(self, lm_output, lm_labels, lm_label_weights,
Chen Chen's avatar
Chen Chen committed
44
45
                   lm_example_loss, sentence_output, sentence_labels,
                   next_sentence_loss):
46
    """Adds metrics."""
47
48
    masked_lm_accuracy = tf.keras.metrics.sparse_categorical_accuracy(
        lm_labels, lm_output)
49
50
51
    numerator = tf.reduce_sum(masked_lm_accuracy * lm_label_weights)
    denominator = tf.reduce_sum(lm_label_weights) + 1e-5
    masked_lm_accuracy = numerator / denominator
52
53
54
55
56
57
58
59
60
61
62
63
64
    self.add_metric(
        masked_lm_accuracy, name='masked_lm_accuracy', aggregation='mean')

    self.add_metric(lm_example_loss, name='lm_example_loss', aggregation='mean')

    next_sentence_accuracy = tf.keras.metrics.sparse_categorical_accuracy(
        sentence_labels, sentence_output)
    self.add_metric(
        next_sentence_accuracy,
        name='next_sentence_accuracy',
        aggregation='mean')

    self.add_metric(
Chen Chen's avatar
Chen Chen committed
65
        next_sentence_loss, name='next_sentence_loss', aggregation='mean')
66

67
68
  def call(self, lm_output, sentence_output, lm_label_ids, lm_label_weights,
           sentence_labels):
69
    """Implements call() for the layer."""
70
    lm_label_weights = tf.keras.backend.cast(lm_label_weights, tf.float32)
Chen Chen's avatar
Chen Chen committed
71
72
73
74
75

    mask_label_loss = losses.weighted_sparse_categorical_crossentropy_loss(
        labels=lm_label_ids, predictions=lm_output, weights=lm_label_weights)
    sentence_loss = losses.weighted_sparse_categorical_crossentropy_loss(
        labels=sentence_labels, predictions=sentence_output)
76
    loss = mask_label_loss + sentence_loss
Chen Chen's avatar
Chen Chen committed
77
    batch_shape = tf.slice(tf.keras.backend.shape(sentence_labels), [0], [1])
78
    # TODO(hongkuny): Avoids the hack and switches add_loss.
Chen Chen's avatar
Chen Chen committed
79
    final_loss = tf.fill(batch_shape, loss)
80
81

    self._add_metrics(lm_output, lm_label_ids, lm_label_weights,
Chen Chen's avatar
Chen Chen committed
82
83
                      mask_label_loss, sentence_output, sentence_labels,
                      sentence_loss)
84
85
86
    return final_loss


Chen Chen's avatar
Chen Chen committed
87
def get_transformer_encoder(bert_config,
Zongwei Zhou's avatar
Zongwei Zhou committed
88
                            sequence_length):
89
90
91
  """Gets a 'TransformerEncoder' object.

  Args:
Chen Chen's avatar
Chen Chen committed
92
    bert_config: A 'modeling.BertConfig' or 'modeling.AlbertConfig' object.
93
94
95
96
97
    sequence_length: Maximum sequence length of the training data.

  Returns:
    A networks.TransformerEncoder object.
  """
Chen Chen's avatar
Chen Chen committed
98
  kwargs = dict(
99
100
101
102
103
      vocab_size=bert_config.vocab_size,
      hidden_size=bert_config.hidden_size,
      num_layers=bert_config.num_hidden_layers,
      num_attention_heads=bert_config.num_attention_heads,
      intermediate_size=bert_config.intermediate_size,
Chen Chen's avatar
Chen Chen committed
104
      activation=tf_utils.get_activation(bert_config.hidden_act),
105
106
107
108
109
110
      dropout_rate=bert_config.hidden_dropout_prob,
      attention_dropout_rate=bert_config.attention_probs_dropout_prob,
      sequence_length=sequence_length,
      max_sequence_length=bert_config.max_position_embeddings,
      type_vocab_size=bert_config.type_vocab_size,
      initializer=tf.keras.initializers.TruncatedNormal(
Zongwei Zhou's avatar
Zongwei Zhou committed
111
          stddev=bert_config.initializer_range))
Chen Chen's avatar
Chen Chen committed
112
113
114
115
116
117
  if isinstance(bert_config, bert_modeling.AlbertConfig):
    kwargs['embedding_width'] = bert_config.embedding_size
    return networks.AlbertTransformerEncoder(**kwargs)
  else:
    assert isinstance(bert_config, bert_modeling.BertConfig)
    return networks.TransformerEncoder(**kwargs)
118
119


120
121
122
123
124
125
126
127
128
129
130
def pretrain_model(bert_config,
                   seq_length,
                   max_predictions_per_seq,
                   initializer=None):
  """Returns model to be used for pre-training.

  Args:
      bert_config: Configuration that defines the core BERT model.
      seq_length: Maximum sequence length of the training data.
      max_predictions_per_seq: Maximum number of tokens in sequence to mask out
        and use for pretraining.
Chen Chen's avatar
Chen Chen committed
131
      initializer: Initializer for weights in BertPretrainer.
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

  Returns:
      Pretraining model as well as core BERT submodel from which to save
      weights after pretraining.
  """
  input_word_ids = tf.keras.layers.Input(
      shape=(seq_length,), name='input_word_ids', dtype=tf.int32)
  input_mask = tf.keras.layers.Input(
      shape=(seq_length,), name='input_mask', dtype=tf.int32)
  input_type_ids = tf.keras.layers.Input(
      shape=(seq_length,), name='input_type_ids', dtype=tf.int32)
  masked_lm_positions = tf.keras.layers.Input(
      shape=(max_predictions_per_seq,),
      name='masked_lm_positions',
      dtype=tf.int32)
Chen Chen's avatar
Chen Chen committed
147
148
  masked_lm_ids = tf.keras.layers.Input(
      shape=(max_predictions_per_seq,), name='masked_lm_ids', dtype=tf.int32)
149
150
151
152
153
154
155
  masked_lm_weights = tf.keras.layers.Input(
      shape=(max_predictions_per_seq,),
      name='masked_lm_weights',
      dtype=tf.int32)
  next_sentence_labels = tf.keras.layers.Input(
      shape=(1,), name='next_sentence_labels', dtype=tf.int32)

Chen Chen's avatar
Chen Chen committed
156
  transformer_encoder = get_transformer_encoder(bert_config, seq_length)
Chen Chen's avatar
Chen Chen committed
157
158
159
160
161
162
163
  if initializer is None:
    initializer = tf.keras.initializers.TruncatedNormal(
        stddev=bert_config.initializer_range)
  pretrainer_model = bert_pretrainer.BertPretrainer(
      network=transformer_encoder,
      num_classes=2,  # The next sentence prediction label has two classes.
      num_token_predictions=max_predictions_per_seq,
164
      initializer=initializer,
Chen Chen's avatar
Chen Chen committed
165
      output='predictions')
166

Chen Chen's avatar
Chen Chen committed
167
168
169
170
171
  lm_output, sentence_output = pretrainer_model(
      [input_word_ids, input_mask, input_type_ids, masked_lm_positions])

  pretrain_loss_layer = BertPretrainLossAndMetricLayer(
      vocab_size=bert_config.vocab_size)
172
173
  output_loss = pretrain_loss_layer(lm_output, sentence_output, masked_lm_ids,
                                    masked_lm_weights, next_sentence_labels)
Chen Chen's avatar
Chen Chen committed
174
  keras_model = tf.keras.Model(
175
176
177
178
179
180
181
182
183
      inputs={
          'input_word_ids': input_word_ids,
          'input_mask': input_mask,
          'input_type_ids': input_type_ids,
          'masked_lm_positions': masked_lm_positions,
          'masked_lm_ids': masked_lm_ids,
          'masked_lm_weights': masked_lm_weights,
          'next_sentence_labels': next_sentence_labels,
      },
Chen Chen's avatar
Chen Chen committed
184
185
      outputs=output_loss)
  return keras_model, transformer_encoder
186
187
188
189
190


class BertSquadLogitsLayer(tf.keras.layers.Layer):
  """Returns a layer that computes custom logits for BERT squad model."""

Zongwei Zhou's avatar
Zongwei Zhou committed
191
  def __init__(self, initializer=None, **kwargs):
192
193
194
195
    super(BertSquadLogitsLayer, self).__init__(**kwargs)
    self.initializer = initializer

  def build(self, unused_input_shapes):
196
    """Implements build() for the layer."""
197
198
199
200
201
    self.final_dense = tf.keras.layers.Dense(
        units=2, kernel_initializer=self.initializer, name='final_dense')
    super(BertSquadLogitsLayer, self).build(unused_input_shapes)

  def call(self, inputs):
202
    """Implements call() for the layer."""
203
204
    sequence_output = inputs

205
206
    input_shape = tf_utils.get_shape_list(
        sequence_output, name='sequence_output_tensor')
207
208
209
210
211
212
213
214
215
216
217
218
    sequence_length = input_shape[1]
    num_hidden_units = input_shape[2]

    final_hidden_input = tf.keras.backend.reshape(sequence_output,
                                                  [-1, num_hidden_units])
    logits = self.final_dense(final_hidden_input)
    logits = tf.keras.backend.reshape(logits, [-1, sequence_length, 2])
    logits = tf.transpose(logits, [2, 0, 1])
    unstacked_logits = tf.unstack(logits, axis=0)
    return unstacked_logits[0], unstacked_logits[1]


Hongkun Yu's avatar
Hongkun Yu committed
219
220
221
def squad_model(bert_config,
                max_seq_length,
                initializer=None,
Chen Chen's avatar
Chen Chen committed
222
                hub_module_url=None):
223
224
225
226
227
  """Returns BERT Squad model along with core BERT model to import weights.

  Args:
    bert_config: BertConfig, the config defines the core Bert model.
    max_seq_length: integer, the maximum input sequence length.
Chen Chen's avatar
Chen Chen committed
228
229
    initializer: Initializer for the final dense layer in the span labeler.
      Defaulted to TruncatedNormal initializer.
Hongkun Yu's avatar
Hongkun Yu committed
230
    hub_module_url: TF-Hub path/url to Bert module.
231
232

  Returns:
233
234
    A tuple of (1) keras model that outputs start logits and end logits and
    (2) the core BERT transformer encoder.
235
  """
Chen Chen's avatar
Chen Chen committed
236
237
238
  if initializer is None:
    initializer = tf.keras.initializers.TruncatedNormal(
        stddev=bert_config.initializer_range)
Chen Chen's avatar
Chen Chen committed
239
  if not hub_module_url:
Zongwei Zhou's avatar
Zongwei Zhou committed
240
    bert_encoder = get_transformer_encoder(bert_config, max_seq_length)
241
    return bert_span_labeler.BertSpanLabeler(
Chen Chen's avatar
Chen Chen committed
242
        network=bert_encoder, initializer=initializer), bert_encoder
243

244
  input_word_ids = tf.keras.layers.Input(
245
      shape=(max_seq_length,), dtype=tf.int32, name='input_word_ids')
246
247
248
  input_mask = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_mask')
  input_type_ids = tf.keras.layers.Input(
249
      shape=(max_seq_length,), dtype=tf.int32, name='input_type_ids')
Chen Chen's avatar
Chen Chen committed
250
251
252
  core_model = hub.KerasLayer(hub_module_url, trainable=True)
  _, sequence_output = core_model(
      [input_word_ids, input_mask, input_type_ids])
253
254

  squad_logits_layer = BertSquadLogitsLayer(
Zongwei Zhou's avatar
Zongwei Zhou committed
255
      initializer=initializer, name='squad_logits')
256
257
258
259
  start_logits, end_logits = squad_logits_layer(sequence_output)

  squad = tf.keras.Model(
      inputs={
260
          'input_word_ids': input_word_ids,
261
          'input_mask': input_mask,
262
          'input_type_ids': input_type_ids,
263
      },
264
      outputs=[start_logits, end_logits],
265
266
267
268
269
270
271
      name='squad_model')
  return squad, core_model


def classifier_model(bert_config,
                     num_labels,
                     max_seq_length,
272
273
                     final_layer_initializer=None,
                     hub_module_url=None):
274
275
276
277
278
279
  """BERT classifier model in functional API style.

  Construct a Keras model for predicting `num_labels` outputs from an input with
  maximum sequence length `max_seq_length`.

  Args:
Chen Chen's avatar
Chen Chen committed
280
281
    bert_config: BertConfig or AlbertConfig, the config defines the core
      BERT or ALBERT model.
282
283
284
285
    num_labels: integer, the number of classes.
    max_seq_length: integer, the maximum input sequence length.
    final_layer_initializer: Initializer for final dense layer. Defaulted
      TruncatedNormal initializer.
Hongkun Yu's avatar
Hongkun Yu committed
286
    hub_module_url: TF-Hub path/url to Bert module.
287
288
289
290
291
292
293
294
295
296
297

  Returns:
    Combined prediction model (words, mask, type) -> (one-hot labels)
    BERT sub-model (words, mask, type) -> (bert_outputs)
  """
  if final_layer_initializer is not None:
    initializer = final_layer_initializer
  else:
    initializer = tf.keras.initializers.TruncatedNormal(
        stddev=bert_config.initializer_range)

Hongkun Yu's avatar
Hongkun Yu committed
298
  if not hub_module_url:
Chen Chen's avatar
Chen Chen committed
299
    bert_encoder = get_transformer_encoder(bert_config, max_seq_length)
Hongkun Yu's avatar
Hongkun Yu committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
    return bert_classifier.BertClassifier(
        bert_encoder,
        num_classes=num_labels,
        dropout_rate=bert_config.hidden_dropout_prob,
        initializer=initializer), bert_encoder

  input_word_ids = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_word_ids')
  input_mask = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_mask')
  input_type_ids = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_type_ids')
  bert_model = hub.KerasLayer(hub_module_url, trainable=True)
  pooled_output, _ = bert_model([input_word_ids, input_mask, input_type_ids])
314
315
  output = tf.keras.layers.Dropout(rate=bert_config.hidden_dropout_prob)(
      pooled_output)
Hongkun Yu's avatar
Hongkun Yu committed
316

317
318
319
  output = tf.keras.layers.Dense(
      num_labels,
      kernel_initializer=initializer,
Zongwei Zhou's avatar
Zongwei Zhou committed
320
      name='output')(
321
322
323
324
325
326
327
328
          output)
  return tf.keras.Model(
      inputs={
          'input_word_ids': input_word_ids,
          'input_mask': input_mask,
          'input_type_ids': input_type_ids
      },
      outputs=output), bert_model