byteqrnn.py 5.89 KB
Newer Older
karun's avatar
karun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# Copyright 2022 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""ByteQRNN based model for in-training tokenization.

Sample model params:

"feature_size": 128,                  # Embedding size for each byte
"gbst_max_token_len": 1024,           # Max sequence length of bytes in GBST
"gbst_downsample_rate": 1,            # Downsample factor for GBST output
"bottleneck_size": 128,               # Bottleneck size before feeding to QRNN
"qrnn_state_size": 128,               # QRNN layer param
"qrnn_kernel_width": 3,               # QRNN layer param
"qrnn_zoneout_probability": 1e-2,     # QRNN layer param
"distortion_probability": 0.25,       # QRNN layer param
"number_qrnn_layers": 3,              # QRNN layer param
"labels": [],                         # List of labels for getting num classes
"regularizer_scale": 1e-5,            # L2 Regularization scale
"quantize": true,                     # Enable quantization
"multilabel": true,                   # If the output is Multilabel
"""
from absl import logging
import tensorflow as tf

pyoung2778's avatar
pyoung2778 committed
36
37
38
39
40
from layers import base_layers # import seq_flow_lite module
from layers import dense_layers # import seq_flow_lite module
from layers import embedding_layers # import seq_flow_lite module
from layers import misc_layers # import seq_flow_lite module
from layers import qrnn_layers # import seq_flow_lite module
karun's avatar
karun committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142


class Encoder(tf.keras.layers.Layer):
  """Encoder with GBST and QRNN layers."""

  def __init__(self, config, mode, **kwargs):
    super(Encoder, self).__init__(**kwargs)

    def _get_params(varname, default_value=None):
      value = config.get(varname, default_value)
      default = "" if varname in config else " (default)"
      logging.info("%s = %s%s", varname, value, default)
      setattr(self, varname, value)

    _get_params("feature_size")
    _get_params("bottleneck_size", self.feature_size)
    _get_params("qrnn_state_size")
    _get_params("qrnn_kernel_width", 3)
    _get_params("qrnn_zoneout_probability")
    _get_params("number_qrnn_layers")
    _get_params("labels", [])
    _get_params("regularizer_scale")
    _get_params("quantize")
    _get_params("gbst_max_token_len", 128)
    _get_params("gbst_downsample_rate", 1)
    _get_params("gbst_max_subword_block_width", 4)
    _get_params("gbst_conv_kernel_size", 5)
    _get_params("gbst_block_mixing_mode")
    _get_params("gbst_add_block_pos_embed", False)
    _get_params("attn_pool_output", True)

    self.num_classes = len(config.get("labels", []))

    self.parameters = base_layers.Parameters(
        mode, quantize=self.quantize, regularizer_scale=self.regularizer_scale)
    # Including 3 additional special token ids (0=padding, 1=EOS, 2=UNK).
    self.vocabulary_size = 259
    self.embedding = embedding_layers.EmbeddingLayer(
        shape=[self.vocabulary_size, self.feature_size],
        parameters=self.parameters)

    self.bottleneck_layer = dense_layers.BaseQDenseVarLen(
        units=self.bottleneck_size,
        rank=3,
        parameters=self.parameters)

    self.gbst_layer = misc_layers.GBSTLayerV2(
        feature_size=self.bottleneck_size,
        max_seq_len=self.gbst_max_token_len,
        downsample_rate=self.gbst_downsample_rate,
        max_subword_block_width=self.gbst_max_subword_block_width,
        conv_kernel_size=self.gbst_conv_kernel_size,
        block_mixing_mode=self.gbst_block_mixing_mode,
        add_block_pos_embed=self.gbst_add_block_pos_embed,
        parameters=self.parameters)

    self.qrnn_stack = qrnn_layers.QRNNBidirectionalStack(
        parameters=self.parameters,
        zoneout_probability=self.qrnn_zoneout_probability,
        kwidth=self.qrnn_kernel_width,
        state_size=self.qrnn_state_size,
        num_layers=self.number_qrnn_layers)
    self.attention_pool = misc_layers.AttentionPooling(
        parameters=self.parameters)

    if self.num_classes:
      self.final_fc = dense_layers.BaseQDense(
          units=self.num_classes,
          rank=2,
          parameters=self.parameters,
          activation=None)

  def call(self, token_ids, seq_length):
    input_embeds = self.embedding(token_ids)
    if self.parameters.mode in [base_layers.PREDICT, base_layers.TFLITE]:
      mask_rank2 = tf.ones(tf.shape(input_embeds)[:-1], dtype=tf.float32)
      seq_length = tf.reduce_sum(mask_rank2, axis=1)
    else:
      mask_rank2 = tf.sequence_mask(
          seq_length, tf.shape(input_embeds)[1], dtype=tf.float32)
    maskr3 = tf.expand_dims(mask_rank2, axis=2)
    gbst_input = self.bottleneck_layer(input_embeds, maskr3)
    gbst_output = self.gbst_layer(gbst_input, seq_length)
    if self.parameters.mode in [base_layers.PREDICT, base_layers.TFLITE]:
      mask_rank2 = tf.ones(tf.shape(gbst_output)[:-1], dtype=tf.float32)
      seq_length = tf.reduce_sum(mask_rank2, axis=1)
    else:
      seq_length = seq_length / self.gbst_downsample_rate
    mask_rank2 = tf.sequence_mask(
        seq_length, tf.shape(gbst_output)[1], dtype=tf.float32)
    inverse_normalizer = tf.math.reciprocal(tf.reduce_sum(mask_rank2))
    maskr3 = tf.expand_dims(mask_rank2, axis=2)
    outputs = self.qrnn_stack(gbst_output, maskr3, inverse_normalizer)
    if self.attn_pool_output:
      pre_logits = self.attention_pool(outputs, maskr3, inverse_normalizer)
      if self.num_classes:
        return self.final_fc(pre_logits)
      else:
        return pre_logits
    else:
      return outputs