byteqrnn.py 5.75 KB
Newer Older
karun's avatar
karun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Copyright 2022 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""ByteQRNN based model for in-training tokenization.

Sample model params:

"feature_size": 128,                  # Embedding size for each byte
"gbst_max_token_len": 1024,           # Max sequence length of bytes in GBST
"gbst_downsample_rate": 1,            # Downsample factor for GBST output
"bottleneck_size": 128,               # Bottleneck size before feeding to QRNN
"qrnn_state_size": 128,               # QRNN layer param
"qrnn_kernel_width": 3,               # QRNN layer param
"qrnn_zoneout_probability": 1e-2,     # QRNN layer param
"distortion_probability": 0.25,       # QRNN layer param
"number_qrnn_layers": 3,              # QRNN layer param
"labels": [],                         # List of labels for getting num classes
"regularizer_scale": 1e-5,            # L2 Regularization scale
"quantize": true,                     # Enable quantization
"multilabel": true,                   # If the output is Multilabel
"""
from absl import logging
import tensorflow as tf

from layers import base_layers
from layers import dense_layers
from layers import embedding_layers
from layers import misc_layers
from layers import qrnn_layers


class Encoder(tf.keras.layers.Layer):
  """Encoder with GBST and QRNN layers."""

  def __init__(self, config, mode, **kwargs):
    super(Encoder, self).__init__(**kwargs)

    def _get_params(varname, default_value=None):
      value = config.get(varname, default_value)
      default = "" if varname in config else " (default)"
      logging.info("%s = %s%s", varname, value, default)
      setattr(self, varname, value)

    _get_params("feature_size")
    _get_params("bottleneck_size", self.feature_size)
    _get_params("qrnn_state_size")
    _get_params("qrnn_kernel_width", 3)
    _get_params("qrnn_zoneout_probability")
    _get_params("number_qrnn_layers")
    _get_params("labels", [])
    _get_params("regularizer_scale")
    _get_params("quantize")
    _get_params("gbst_max_token_len", 128)
    _get_params("gbst_downsample_rate", 1)
    _get_params("gbst_max_subword_block_width", 4)
    _get_params("gbst_conv_kernel_size", 5)
    _get_params("gbst_block_mixing_mode")
    _get_params("gbst_add_block_pos_embed", False)
    _get_params("attn_pool_output", True)

    self.num_classes = len(config.get("labels", []))

    self.parameters = base_layers.Parameters(
        mode, quantize=self.quantize, regularizer_scale=self.regularizer_scale)
    # Including 3 additional special token ids (0=padding, 1=EOS, 2=UNK).
    self.vocabulary_size = 259
    self.embedding = embedding_layers.EmbeddingLayer(
        shape=[self.vocabulary_size, self.feature_size],
        parameters=self.parameters)

    self.bottleneck_layer = dense_layers.BaseQDenseVarLen(
        units=self.bottleneck_size,
        rank=3,
        parameters=self.parameters)

    self.gbst_layer = misc_layers.GBSTLayerV2(
        feature_size=self.bottleneck_size,
        max_seq_len=self.gbst_max_token_len,
        downsample_rate=self.gbst_downsample_rate,
        max_subword_block_width=self.gbst_max_subword_block_width,
        conv_kernel_size=self.gbst_conv_kernel_size,
        block_mixing_mode=self.gbst_block_mixing_mode,
        add_block_pos_embed=self.gbst_add_block_pos_embed,
        parameters=self.parameters)

    self.qrnn_stack = qrnn_layers.QRNNBidirectionalStack(
        parameters=self.parameters,
        zoneout_probability=self.qrnn_zoneout_probability,
        kwidth=self.qrnn_kernel_width,
        state_size=self.qrnn_state_size,
        num_layers=self.number_qrnn_layers)
    self.attention_pool = misc_layers.AttentionPooling(
        parameters=self.parameters)

    if self.num_classes:
      self.final_fc = dense_layers.BaseQDense(
          units=self.num_classes,
          rank=2,
          parameters=self.parameters,
          activation=None)

  def call(self, token_ids, seq_length):
    input_embeds = self.embedding(token_ids)
    if self.parameters.mode in [base_layers.PREDICT, base_layers.TFLITE]:
      mask_rank2 = tf.ones(tf.shape(input_embeds)[:-1], dtype=tf.float32)
      seq_length = tf.reduce_sum(mask_rank2, axis=1)
    else:
      mask_rank2 = tf.sequence_mask(
          seq_length, tf.shape(input_embeds)[1], dtype=tf.float32)
    maskr3 = tf.expand_dims(mask_rank2, axis=2)
    gbst_input = self.bottleneck_layer(input_embeds, maskr3)
    gbst_output = self.gbst_layer(gbst_input, seq_length)
    if self.parameters.mode in [base_layers.PREDICT, base_layers.TFLITE]:
      mask_rank2 = tf.ones(tf.shape(gbst_output)[:-1], dtype=tf.float32)
      seq_length = tf.reduce_sum(mask_rank2, axis=1)
    else:
      seq_length = seq_length / self.gbst_downsample_rate
    mask_rank2 = tf.sequence_mask(
        seq_length, tf.shape(gbst_output)[1], dtype=tf.float32)
    inverse_normalizer = tf.math.reciprocal(tf.reduce_sum(mask_rank2))
    maskr3 = tf.expand_dims(mask_rank2, axis=2)
    outputs = self.qrnn_stack(gbst_output, maskr3, inverse_normalizer)
    if self.attn_pool_output:
      pre_logits = self.attention_pool(outputs, maskr3, inverse_normalizer)
      if self.num_classes:
        return self.final_fc(pre_logits)
      else:
        return pre_logits
    else:
      return outputs