distribution_utils.py 12.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Helper functions for running models in a distributed setting."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
22
import json
import os
23
24
import random
import string
25
26
import tensorflow as tf

27
28
from official.utils.misc import tpu_lib

29

30
31
def _collective_communication(all_reduce_alg):
  """Return a CollectiveCommunication based on all_reduce_alg.
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
  Args:
    all_reduce_alg: a string specifying which collective communication to pick,
      or None.

  Returns:
    tf.distribute.experimental.CollectiveCommunication object

  Raises:
    ValueError: if `all_reduce_alg` not in [None, 'ring', 'nccl']
  """
  collective_communication_options = {
      None: tf.distribute.experimental.CollectiveCommunication.AUTO,
      "ring": tf.distribute.experimental.CollectiveCommunication.RING,
      "nccl": tf.distribute.experimental.CollectiveCommunication.NCCL
  }
  if all_reduce_alg not in collective_communication_options:
    raise ValueError(
        "When used with `multi_worker_mirrored`, valid values for "
        "all_reduce_alg are ['ring', 'nccl'].  Supplied value: {}".format(
            all_reduce_alg))
  return collective_communication_options[all_reduce_alg]


def _mirrored_cross_device_ops(all_reduce_alg, num_packs):
  """Return a CrossDeviceOps based on all_reduce_alg and num_packs.

  Args:
    all_reduce_alg: a string specifying which cross device op to pick, or None.
    num_packs: an integer specifying number of packs for the cross device op.

  Returns:
    tf.distribute.CrossDeviceOps object or None.

  Raises:
    ValueError: if `all_reduce_alg` not in [None, 'nccl', 'hierarchical_copy'].
  """
  if all_reduce_alg is None:
    return None
  mirrored_all_reduce_options = {
      "nccl": tf.distribute.NcclAllReduce,
      "hierarchical_copy": tf.distribute.HierarchicalCopyAllReduce
  }
  if all_reduce_alg not in mirrored_all_reduce_options:
    raise ValueError(
        "When used with `mirrored`, valid values for all_reduce_alg are "
        "['nccl', 'hierarchical_copy'].  Supplied value: {}".format(
            all_reduce_alg))
  cross_device_ops_class = mirrored_all_reduce_options[all_reduce_alg]
  return cross_device_ops_class(num_packs=num_packs)
82

83

84
85
def get_distribution_strategy(distribution_strategy="default",
                              num_gpus=0,
86
                              num_workers=1,
87
                              all_reduce_alg=None,
88
89
                              num_packs=1,
                              tpu_address=None):
90
91
92
  """Return a DistributionStrategy for running the model.

  Args:
93
94
    distribution_strategy: a string specifying which distribution strategy to
      use. Accepted values are 'off', 'default', 'one_device', 'mirrored',
95
96
      'parameter_server', 'multi_worker_mirrored', and 'tpu' -- case insensitive.
      'off' means not to use Distribution Strategy; 'default' means to choose from
97
      `MirroredStrategy`, `MultiWorkerMirroredStrategy`, or `OneDeviceStrategy`
98
99
      according to the number of GPUs and number of workers. 'tpu' means to use
      TPUStrategy using `tpu_address`.
100
    num_gpus: Number of GPUs to run this model.
101
    num_workers: Number of workers to run this model.
102
103
104
105
106
    all_reduce_alg: Optional. Specifies which algorithm to use when performing
      all-reduce. For `MirroredStrategy`, valid values are "nccl" and
      "hierarchical_copy". For `MultiWorkerMirroredStrategy`, valid values are
      "ring" and "nccl".  If None, DistributionStrategy will choose based on
      device topology.
107
108
    num_packs: Optional.  Sets the `num_packs` in `tf.distribute.NcclAllReduce`
      or `tf.distribute.HierarchicalCopyAllReduce` for `MirroredStrategy`.
109
110
    tpu_address: Optional. String that represents TPU to connect to. Must not
      be None if `distribution_strategy` is set to `tpu`.
111
  Returns:
112
    tf.distribute.DistibutionStrategy object.
Shining Sun's avatar
Shining Sun committed
113
  Raises:
114
    ValueError: if `distribution_strategy` is 'off' or 'one_device' and
115
116
      `num_gpus` is larger than 1; or `num_gpus` is negative or if
      `distribution_strategy` is `tpu` but `tpu_address` is not specified.
117
  """
118
119
120
121
122
  if num_gpus < 0:
    raise ValueError("`num_gpus` can not be negative.")

  distribution_strategy = distribution_strategy.lower()
  if distribution_strategy == "off":
123
    if num_gpus > 1:
124
125
126
      raise ValueError(
          "When {} GPUs and  {} workers are specified, distribution_strategy "
          "flag cannot be set to 'off'.".format(num_gpus, num_workers))
127
128
    return None

129
130
131
132
133
134
135
136
137
  if distribution_strategy == "tpu":
    if not tpu_address:
      raise ValueError("`tpu_address` must be specified when using "
                       "TPUStrategy.")

    # Initialize TPU System.
    cluster_resolver = tpu_lib.tpu_initialize(tpu_address)
    return tf.distribute.experimental.TPUStrategy(cluster_resolver)

138
  if distribution_strategy == "multi_worker_mirrored":
139
    return tf.distribute.experimental.MultiWorkerMirroredStrategy(
140
        communication=_collective_communication(all_reduce_alg))
141

142
143
144
  if (distribution_strategy == "one_device" or
      (distribution_strategy == "default" and num_gpus <= 1)):
    if num_gpus == 0:
Toby Boyd's avatar
Toby Boyd committed
145
      return tf.distribute.OneDeviceStrategy("device:CPU:0")
Toby Boyd's avatar
Toby Boyd committed
146
    else:
147
148
149
      if num_gpus > 1:
        raise ValueError("`OneDeviceStrategy` can not be used for more than "
                         "one device.")
Toby Boyd's avatar
Toby Boyd committed
150
      return tf.distribute.OneDeviceStrategy("device:GPU:0")
151
152
153
154
155

  if distribution_strategy in ("mirrored", "default"):
    if num_gpus == 0:
      assert distribution_strategy == "mirrored"
      devices = ["device:CPU:0"]
Shining Sun's avatar
Shining Sun committed
156
    else:
157
      devices = ["device:GPU:%d" % i for i in range(num_gpus)]
158
159
    return tf.distribute.MirroredStrategy(
        devices=devices,
160
        cross_device_ops=_mirrored_cross_device_ops(all_reduce_alg, num_packs))
161

162
  if distribution_strategy == "parameter_server":
163
    return tf.distribute.experimental.ParameterServerStrategy()
164
165
166
167

  raise ValueError(
      "Unrecognized Distribution Strategy: %r" % distribution_strategy)

168

169
def per_replica_batch_size(batch_size, num_gpus):
170
171
  """For multi-gpu, batch-size must be a multiple of the number of GPUs.

172
173
174

  Note that distribution strategy handles this automatically when used with
  Keras. For using with Estimator, we need to get per GPU batch.
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

  Args:
    batch_size: Global batch size to be divided among devices. This should be
      equal to num_gpus times the single-GPU batch_size for multi-gpu training.
    num_gpus: How many GPUs are used with DistributionStrategies.

  Returns:
    Batch size per device.

  Raises:
    ValueError: if batch_size is not divisible by number of devices
  """
  if num_gpus <= 1:
    return batch_size

  remainder = batch_size % num_gpus
  if remainder:
Toby Boyd's avatar
Toby Boyd committed
192
193
194
    err = ('When running with multiple GPUs, batch size '
           'must be a multiple of the number of available GPUs. Found {} '
           'GPUs with a batch size of {}; try --batch_size={} instead.'
195
196
197
          ).format(num_gpus, batch_size, batch_size - remainder)
    raise ValueError(err)
  return int(batch_size / num_gpus)
198

Toby Boyd's avatar
Toby Boyd committed
199

200
201
202
203
204
205
206
207
208
# The `SyntheticDataset` is a temporary solution for generating synthetic data
# directly on devices. It is only useful for Keras with Distribution
# Strategies. We will have better support in `tf.data` or Distribution Strategy
# later.
class SyntheticDataset(object):
  """A dataset that generates synthetic data on each device."""

  def __init__(self, dataset, split_by=1):
    # dataset.take(1) doesn't have GPU kernel.
Toby Boyd's avatar
Toby Boyd committed
209
    with tf.device('device:CPU:0'):
210
211
212
      tensor = tf.data.experimental.get_single_element(dataset.take(1))
    flat_tensor = tf.nest.flatten(tensor)
    variable_data = []
213
    initializers = []
214
215
216
    for t in flat_tensor:
      rebatched_t = tf.split(t, num_or_size_splits=split_by, axis=0)[0]
      assert rebatched_t.shape.is_fully_defined(), rebatched_t.shape
217
      v = tf.compat.v1.get_local_variable(self._random_name(),
Toby Boyd's avatar
Toby Boyd committed
218
                                          initializer=rebatched_t)
219
      variable_data.append(v)
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
      initializers.append(v.initializer)
    input_data = tf.nest.pack_sequence_as(tensor, variable_data)
    self._iterator = SyntheticIterator(input_data, initializers)

  def _random_name(self, size=10, chars=string.ascii_uppercase + string.digits):
    return ''.join(random.choice(chars) for _ in range(size))

  def __iter__(self):
    return self._iterator

  def make_one_shot_iterator(self):
    return self._iterator

  def make_initializable_iterator(self):
    return self._iterator


class SyntheticIterator(object):
  """A dataset that generates synthetic data on each device."""

  def __init__(self, input_data, initializers):
    self._input_data = input_data
    self._initializers = initializers
243
244
245
246

  def get_next(self):
    return self._input_data

247
248
249
250
251
252
253
254
255
  def next(self):
    return self.__next__()

  def __next__(self):
    try:
      return self.get_next()
    except tf.errors.OutOfRangeError:
      raise StopIteration

256
257
258
259
260
261
262
263
264
  def initialize(self):
    if tf.executing_eagerly():
      return tf.no_op()
    else:
      return self._initializers


def _monkey_patch_dataset_method(strategy):
  """Monkey-patch `strategy`'s `make_dataset_iterator` method."""
265
  def make_dataset(self, dataset):
Toby Boyd's avatar
Toby Boyd committed
266
    tf.compat.v1.logging.info('Using pure synthetic data.')
267
268
269
270
271
272
    with self.scope():
      if self.extended._global_batch_size:  # pylint: disable=protected-access
        return SyntheticDataset(dataset, self.num_replicas_in_sync)
      else:
        return SyntheticDataset(dataset)

273
274
275
276
277
278
279
280
  def make_iterator(self, dataset):
    dist_dataset = make_dataset(self, dataset)
    return iter(dist_dataset)

  strategy.orig_make_dataset_iterator = strategy.make_dataset_iterator
  strategy.make_dataset_iterator = make_iterator
  strategy.orig_distribute_dataset = strategy.experimental_distribute_dataset
  strategy.experimental_distribute_dataset = make_dataset
281
282
283


def _undo_monkey_patch_dataset_method(strategy):
284
285
286
287
  if hasattr(strategy, 'orig_make_dataset_iterator'):
    strategy.make_dataset_iterator = strategy.orig_make_dataset_iterator
  if hasattr(strategy, 'orig_distribute_dataset'):
    strategy.make_dataset_iterator = strategy.orig_distribute_dataset
288
289
290


def set_up_synthetic_data():
291
  _monkey_patch_dataset_method(tf.distribute.OneDeviceStrategy)
292
  _monkey_patch_dataset_method(tf.distribute.MirroredStrategy)
Toby Boyd's avatar
Toby Boyd committed
293
294
295
296
297
298
  # TODO(tobyboyd): Remove when contrib.distribute is all in core.
  if hasattr(tf, 'contrib'):
    _monkey_patch_dataset_method(tf.contrib.distribute.MirroredStrategy)
    _monkey_patch_dataset_method(tf.contrib.distribute.OneDeviceStrategy)
  else:
    print('Contrib missing: Skip monkey patch tf.contrib.distribute.*')
299
300
301


def undo_set_up_synthetic_data():
302
  _undo_monkey_patch_dataset_method(tf.distribute.OneDeviceStrategy)
303
  _undo_monkey_patch_dataset_method(tf.distribute.MirroredStrategy)
Toby Boyd's avatar
Toby Boyd committed
304
305
306
307
308
309
  # TODO(tobyboyd): Remove when contrib.distribute is all in core.
  if hasattr(tf, 'contrib'):
    _undo_monkey_patch_dataset_method(tf.contrib.distribute.MirroredStrategy)
    _undo_monkey_patch_dataset_method(tf.contrib.distribute.OneDeviceStrategy)
  else:
    print('Contrib missing: Skip remove monkey patch tf.contrib.distribute.*')
310
311
312
313
314
315
316
317
318
319
320
321
322


def configure_cluster(worker_hosts=None, task_index=-1):
  """Set multi-worker cluster spec in TF_CONFIG environment variable.

  Args:
    worker_hosts: comma-separated list of worker ip:port pairs.

  Returns:
    Number of workers in the cluster.
  """
  tf_config = json.loads(os.environ.get('TF_CONFIG', '{}'))
  if tf_config:
323
324
    num_workers = (len(tf_config['cluster'].get('chief', [])) +
                   len(tf_config['cluster'].get('worker', [])))
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
  elif worker_hosts:
    workers = worker_hosts.split(',')
    num_workers = len(workers)
    if num_workers > 1 and task_index < 0:
      raise ValueError('Must specify task_index when number of workers > 1')
    task_index = 0 if num_workers == 1 else task_index
    os.environ['TF_CONFIG'] = json.dumps({
        'cluster': {
            'worker': workers
        },
        'task': {'type': 'worker', 'index': task_index}
    })
  else:
    num_workers = 1
  return num_workers
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357


def get_strategy_scope(strategy):
  if strategy:
    strategy_scope = strategy.scope()
  else:
    strategy_scope = DummyContextManager()

  return strategy_scope


class DummyContextManager(object):

  def __enter__(self):
    pass

  def __exit__(self, *args):
    pass