bert_models.py 13.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT models that are compatible with TF 2.0."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Hongkun Yu's avatar
Hongkun Yu committed
21
import gin
22
import tensorflow as tf
23
import tensorflow_hub as hub
24

25
from official.modeling import tf_utils
26
from official.nlp.albert import configs as albert_configs
27
from official.nlp.bert import configs
Chen Chen's avatar
Chen Chen committed
28
from official.nlp.modeling import losses
29
from official.nlp.modeling import models
Hongkun Yu's avatar
Hongkun Yu committed
30
from official.nlp.modeling import networks
31
32
33
34
35


class BertPretrainLossAndMetricLayer(tf.keras.layers.Layer):
  """Returns layer that computes custom loss and metrics for pretraining."""

Chen Chen's avatar
Chen Chen committed
36
  def __init__(self, vocab_size, **kwargs):
37
    super(BertPretrainLossAndMetricLayer, self).__init__(**kwargs)
Chen Chen's avatar
Chen Chen committed
38
39
40
41
    self._vocab_size = vocab_size
    self.config = {
        'vocab_size': vocab_size,
    }
42
43

  def _add_metrics(self, lm_output, lm_labels, lm_label_weights,
Chen Chen's avatar
Chen Chen committed
44
45
                   lm_example_loss, sentence_output, sentence_labels,
                   next_sentence_loss):
46
    """Adds metrics."""
47
48
    masked_lm_accuracy = tf.keras.metrics.sparse_categorical_accuracy(
        lm_labels, lm_output)
49
50
51
    numerator = tf.reduce_sum(masked_lm_accuracy * lm_label_weights)
    denominator = tf.reduce_sum(lm_label_weights) + 1e-5
    masked_lm_accuracy = numerator / denominator
52
53
54
55
56
    self.add_metric(
        masked_lm_accuracy, name='masked_lm_accuracy', aggregation='mean')

    self.add_metric(lm_example_loss, name='lm_example_loss', aggregation='mean')

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    if sentence_labels is not None:
      next_sentence_accuracy = tf.keras.metrics.sparse_categorical_accuracy(
          sentence_labels, sentence_output)
      self.add_metric(
          next_sentence_accuracy,
          name='next_sentence_accuracy',
          aggregation='mean')

    if next_sentence_loss is not None:
      self.add_metric(
          next_sentence_loss, name='next_sentence_loss', aggregation='mean')

  def call(self,
           lm_output,
           sentence_output,
           lm_label_ids,
           lm_label_weights,
           sentence_labels=None):
75
    """Implements call() for the layer."""
76
    lm_label_weights = tf.cast(lm_label_weights, tf.float32)
77
    lm_output = tf.cast(lm_output, tf.float32)
Chen Chen's avatar
Chen Chen committed
78
79
80

    mask_label_loss = losses.weighted_sparse_categorical_crossentropy_loss(
        labels=lm_label_ids, predictions=lm_output, weights=lm_label_weights)
81
82
83
84
85
86
87
88
89
90
91

    if sentence_labels is not None:
      sentence_output = tf.cast(sentence_output, tf.float32)
      sentence_loss = losses.weighted_sparse_categorical_crossentropy_loss(
          labels=sentence_labels, predictions=sentence_output)
      loss = mask_label_loss + sentence_loss
    else:
      sentence_loss = None
      loss = mask_label_loss

    batch_shape = tf.slice(tf.shape(lm_label_ids), [0], [1])
92
    # TODO(hongkuny): Avoids the hack and switches add_loss.
Chen Chen's avatar
Chen Chen committed
93
    final_loss = tf.fill(batch_shape, loss)
94
95

    self._add_metrics(lm_output, lm_label_ids, lm_label_weights,
Chen Chen's avatar
Chen Chen committed
96
97
                      mask_label_loss, sentence_output, sentence_labels,
                      sentence_loss)
98
99
100
    return final_loss


Hongkun Yu's avatar
Hongkun Yu committed
101
102
103
@gin.configurable
def get_transformer_encoder(bert_config,
                            sequence_length,
104
105
                            transformer_encoder_cls=None,
                            output_range=None):
106
107
108
  """Gets a 'TransformerEncoder' object.

  Args:
Chen Chen's avatar
Chen Chen committed
109
    bert_config: A 'modeling.BertConfig' or 'modeling.AlbertConfig' object.
110
    sequence_length: Maximum sequence length of the training data.
Hongkun Yu's avatar
Hongkun Yu committed
111
112
    transformer_encoder_cls: A EncoderScaffold class. If it is None, uses the
      default BERT encoder implementation.
113
114
    output_range: the sequence output range, [0, output_range). Default setting
      is to return the entire sequence output.
115
116
117
118

  Returns:
    A networks.TransformerEncoder object.
  """
Hongkun Yu's avatar
Hongkun Yu committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
  if transformer_encoder_cls is not None:
    # TODO(hongkuny): evaluate if it is better to put cfg definition in gin.
    embedding_cfg = dict(
        vocab_size=bert_config.vocab_size,
        type_vocab_size=bert_config.type_vocab_size,
        hidden_size=bert_config.hidden_size,
        seq_length=sequence_length,
        max_seq_length=bert_config.max_position_embeddings,
        initializer=tf.keras.initializers.TruncatedNormal(
            stddev=bert_config.initializer_range),
        dropout_rate=bert_config.hidden_dropout_prob,
    )
    hidden_cfg = dict(
        num_attention_heads=bert_config.num_attention_heads,
        intermediate_size=bert_config.intermediate_size,
        intermediate_activation=tf_utils.get_activation(bert_config.hidden_act),
        dropout_rate=bert_config.hidden_dropout_prob,
        attention_dropout_rate=bert_config.attention_probs_dropout_prob,
    )
138
139
140
141
142
143
    kwargs = dict(
        embedding_cfg=embedding_cfg,
        hidden_cfg=hidden_cfg,
        num_hidden_instances=bert_config.num_hidden_layers,
        pooled_output_dim=bert_config.hidden_size,
    )
Hongkun Yu's avatar
Hongkun Yu committed
144
145
146
147

    # Relies on gin configuration to define the Transformer encoder arguments.
    return transformer_encoder_cls(**kwargs)

Chen Chen's avatar
Chen Chen committed
148
  kwargs = dict(
149
150
151
152
153
      vocab_size=bert_config.vocab_size,
      hidden_size=bert_config.hidden_size,
      num_layers=bert_config.num_hidden_layers,
      num_attention_heads=bert_config.num_attention_heads,
      intermediate_size=bert_config.intermediate_size,
Chen Chen's avatar
Chen Chen committed
154
      activation=tf_utils.get_activation(bert_config.hidden_act),
155
156
157
158
159
160
      dropout_rate=bert_config.hidden_dropout_prob,
      attention_dropout_rate=bert_config.attention_probs_dropout_prob,
      sequence_length=sequence_length,
      max_sequence_length=bert_config.max_position_embeddings,
      type_vocab_size=bert_config.type_vocab_size,
      initializer=tf.keras.initializers.TruncatedNormal(
Zongwei Zhou's avatar
Zongwei Zhou committed
161
          stddev=bert_config.initializer_range))
162
  if isinstance(bert_config, albert_configs.AlbertConfig):
Chen Chen's avatar
Chen Chen committed
163
164
165
    kwargs['embedding_width'] = bert_config.embedding_size
    return networks.AlbertTransformerEncoder(**kwargs)
  else:
166
    assert isinstance(bert_config, configs.BertConfig)
167
    kwargs['output_range'] = output_range
Chen Chen's avatar
Chen Chen committed
168
    return networks.TransformerEncoder(**kwargs)
169
170


171
172
173
def pretrain_model(bert_config,
                   seq_length,
                   max_predictions_per_seq,
174
175
                   initializer=None,
                   use_next_sentence_label=True):
176
177
178
179
180
181
182
  """Returns model to be used for pre-training.

  Args:
      bert_config: Configuration that defines the core BERT model.
      seq_length: Maximum sequence length of the training data.
      max_predictions_per_seq: Maximum number of tokens in sequence to mask out
        and use for pretraining.
Chen Chen's avatar
Chen Chen committed
183
      initializer: Initializer for weights in BertPretrainer.
184
      use_next_sentence_label: Whether to use the next sentence label.
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

  Returns:
      Pretraining model as well as core BERT submodel from which to save
      weights after pretraining.
  """
  input_word_ids = tf.keras.layers.Input(
      shape=(seq_length,), name='input_word_ids', dtype=tf.int32)
  input_mask = tf.keras.layers.Input(
      shape=(seq_length,), name='input_mask', dtype=tf.int32)
  input_type_ids = tf.keras.layers.Input(
      shape=(seq_length,), name='input_type_ids', dtype=tf.int32)
  masked_lm_positions = tf.keras.layers.Input(
      shape=(max_predictions_per_seq,),
      name='masked_lm_positions',
      dtype=tf.int32)
Chen Chen's avatar
Chen Chen committed
200
201
  masked_lm_ids = tf.keras.layers.Input(
      shape=(max_predictions_per_seq,), name='masked_lm_ids', dtype=tf.int32)
202
203
204
205
  masked_lm_weights = tf.keras.layers.Input(
      shape=(max_predictions_per_seq,),
      name='masked_lm_weights',
      dtype=tf.int32)
206
207
208
209
210
211

  if use_next_sentence_label:
    next_sentence_labels = tf.keras.layers.Input(
        shape=(1,), name='next_sentence_labels', dtype=tf.int32)
  else:
    next_sentence_labels = None
212

Chen Chen's avatar
Chen Chen committed
213
  transformer_encoder = get_transformer_encoder(bert_config, seq_length)
Chen Chen's avatar
Chen Chen committed
214
215
216
  if initializer is None:
    initializer = tf.keras.initializers.TruncatedNormal(
        stddev=bert_config.initializer_range)
217
  pretrainer_model = models.BertPretrainer(
Chen Chen's avatar
Chen Chen committed
218
      network=transformer_encoder,
219
      embedding_table=transformer_encoder.get_embedding_table(),
Chen Chen's avatar
Chen Chen committed
220
221
      num_classes=2,  # The next sentence prediction label has two classes.
      num_token_predictions=max_predictions_per_seq,
222
      initializer=initializer,
Chen Chen's avatar
Chen Chen committed
223
      output='predictions')
224

Chen Chen's avatar
Chen Chen committed
225
226
227
228
229
  lm_output, sentence_output = pretrainer_model(
      [input_word_ids, input_mask, input_type_ids, masked_lm_positions])

  pretrain_loss_layer = BertPretrainLossAndMetricLayer(
      vocab_size=bert_config.vocab_size)
230
231
  output_loss = pretrain_loss_layer(lm_output, sentence_output, masked_lm_ids,
                                    masked_lm_weights, next_sentence_labels)
232
233
234
235
236
237
238
239
240
241
242
243
  inputs = {
      'input_word_ids': input_word_ids,
      'input_mask': input_mask,
      'input_type_ids': input_type_ids,
      'masked_lm_positions': masked_lm_positions,
      'masked_lm_ids': masked_lm_ids,
      'masked_lm_weights': masked_lm_weights,
  }
  if use_next_sentence_label:
    inputs['next_sentence_labels'] = next_sentence_labels

  keras_model = tf.keras.Model(inputs=inputs, outputs=output_loss)
Chen Chen's avatar
Chen Chen committed
244
  return keras_model, transformer_encoder
245
246


Hongkun Yu's avatar
Hongkun Yu committed
247
248
249
def squad_model(bert_config,
                max_seq_length,
                initializer=None,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
250
251
                hub_module_url=None,
                hub_module_trainable=True):
252
253
254
255
256
  """Returns BERT Squad model along with core BERT model to import weights.

  Args:
    bert_config: BertConfig, the config defines the core Bert model.
    max_seq_length: integer, the maximum input sequence length.
Chen Chen's avatar
Chen Chen committed
257
258
    initializer: Initializer for the final dense layer in the span labeler.
      Defaulted to TruncatedNormal initializer.
Hongkun Yu's avatar
Hongkun Yu committed
259
    hub_module_url: TF-Hub path/url to Bert module.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
260
    hub_module_trainable: True to finetune layers in the hub module.
261
262

  Returns:
263
264
    A tuple of (1) keras model that outputs start logits and end logits and
    (2) the core BERT transformer encoder.
265
  """
Chen Chen's avatar
Chen Chen committed
266
267
268
  if initializer is None:
    initializer = tf.keras.initializers.TruncatedNormal(
        stddev=bert_config.initializer_range)
Chen Chen's avatar
Chen Chen committed
269
  if not hub_module_url:
Zongwei Zhou's avatar
Zongwei Zhou committed
270
    bert_encoder = get_transformer_encoder(bert_config, max_seq_length)
271
    return models.BertSpanLabeler(
Chen Chen's avatar
Chen Chen committed
272
        network=bert_encoder, initializer=initializer), bert_encoder
273

274
  input_word_ids = tf.keras.layers.Input(
275
      shape=(max_seq_length,), dtype=tf.int32, name='input_word_ids')
276
277
278
  input_mask = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_mask')
  input_type_ids = tf.keras.layers.Input(
279
      shape=(max_seq_length,), dtype=tf.int32, name='input_type_ids')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
280
  core_model = hub.KerasLayer(hub_module_url, trainable=hub_module_trainable)
281
  pooled_output, sequence_output = core_model(
Chen Chen's avatar
Chen Chen committed
282
      [input_word_ids, input_mask, input_type_ids])
283
  bert_encoder = tf.keras.Model(
284
      inputs={
285
          'input_word_ids': input_word_ids,
286
          'input_mask': input_mask,
287
          'input_type_ids': input_type_ids,
288
      },
289
290
      outputs=[sequence_output, pooled_output],
      name='core_model')
291
  return models.BertSpanLabeler(
292
      network=bert_encoder, initializer=initializer), bert_encoder
293
294
295
296
297


def classifier_model(bert_config,
                     num_labels,
                     max_seq_length,
298
                     final_layer_initializer=None,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
299
300
                     hub_module_url=None,
                     hub_module_trainable=True):
301
302
303
304
305
306
  """BERT classifier model in functional API style.

  Construct a Keras model for predicting `num_labels` outputs from an input with
  maximum sequence length `max_seq_length`.

  Args:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
307
308
    bert_config: BertConfig or AlbertConfig, the config defines the core BERT or
      ALBERT model.
309
310
311
312
    num_labels: integer, the number of classes.
    max_seq_length: integer, the maximum input sequence length.
    final_layer_initializer: Initializer for final dense layer. Defaulted
      TruncatedNormal initializer.
Hongkun Yu's avatar
Hongkun Yu committed
313
    hub_module_url: TF-Hub path/url to Bert module.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
314
    hub_module_trainable: True to finetune layers in the hub module.
315
316
317
318
319
320
321
322
323
324
325

  Returns:
    Combined prediction model (words, mask, type) -> (one-hot labels)
    BERT sub-model (words, mask, type) -> (bert_outputs)
  """
  if final_layer_initializer is not None:
    initializer = final_layer_initializer
  else:
    initializer = tf.keras.initializers.TruncatedNormal(
        stddev=bert_config.initializer_range)

Hongkun Yu's avatar
Hongkun Yu committed
326
  if not hub_module_url:
327
328
    bert_encoder = get_transformer_encoder(
        bert_config, max_seq_length, output_range=1)
329
    return models.BertClassifier(
Hongkun Yu's avatar
Hongkun Yu committed
330
331
332
333
334
335
336
337
338
339
340
        bert_encoder,
        num_classes=num_labels,
        dropout_rate=bert_config.hidden_dropout_prob,
        initializer=initializer), bert_encoder

  input_word_ids = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_word_ids')
  input_mask = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_mask')
  input_type_ids = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_type_ids')
341
  bert_model = hub.KerasLayer(hub_module_url, trainable=hub_module_trainable)
Hongkun Yu's avatar
Hongkun Yu committed
342
  pooled_output, _ = bert_model([input_word_ids, input_mask, input_type_ids])
343
344
  output = tf.keras.layers.Dropout(rate=bert_config.hidden_dropout_prob)(
      pooled_output)
Hongkun Yu's avatar
Hongkun Yu committed
345

346
  output = tf.keras.layers.Dense(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
347
      num_labels, kernel_initializer=initializer, name='output')(
348
349
350
351
352
353
354
355
          output)
  return tf.keras.Model(
      inputs={
          'input_word_ids': input_word_ids,
          'input_mask': input_mask,
          'input_type_ids': input_type_ids
      },
      outputs=output), bert_model