input_pipeline.py 11.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT model input pipelines."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf


24
25
26
27
28
29
30
31
32
33
34
def decode_record(record, name_to_features):
  """Decodes a record to a TensorFlow example."""
  example = tf.io.parse_single_example(record, name_to_features)

  # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
  # So cast all int64 to int32.
  for name in list(example.keys()):
    t = example[name]
    if t.dtype == tf.int64:
      t = tf.cast(t, tf.int32)
    example[name] = t
35

36
  return example
37
38


39
def single_file_dataset(input_file, name_to_features, num_samples=None):
Hongkun Yu's avatar
Hongkun Yu committed
40
41
42
43
  """Creates a single-file dataset to be passed for BERT custom training."""
  # For training, we want a lot of parallel reading and shuffling.
  # For eval, we want no shuffling and parallel reading doesn't matter.
  d = tf.data.TFRecordDataset(input_file)
44
45
  if num_samples:
    d = d.take(num_samples)
Chen Chen's avatar
Chen Chen committed
46
47
48
  d = d.map(
      lambda record: decode_record(record, name_to_features),
      num_parallel_calls=tf.data.experimental.AUTOTUNE)
Hongkun Yu's avatar
Hongkun Yu committed
49
50
51
52
53
54
55
56
57
58

  # When `input_file` is a path to a single file or a list
  # containing a single path, disable auto sharding so that
  # same input file is sent to all workers.
  if isinstance(input_file, str) or len(input_file) == 1:
    options = tf.data.Options()
    options.experimental_distribute.auto_shard_policy = (
        tf.data.experimental.AutoShardPolicy.OFF)
    d = d.with_options(options)
  return d
59
60


61
def create_pretrain_dataset(input_patterns,
62
63
64
                            seq_length,
                            max_predictions_per_seq,
                            batch_size,
65
                            is_training=True,
66
                            input_pipeline_context=None,
Chen Chen's avatar
Chen Chen committed
67
                            use_next_sentence_label=True,
Hongkun Yu's avatar
Hongkun Yu committed
68
69
                            use_position_id=False,
                            output_fake_labels=True):
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
  """Creates input dataset from (tf)records files for pretraining."""
  name_to_features = {
      'input_ids':
          tf.io.FixedLenFeature([seq_length], tf.int64),
      'input_mask':
          tf.io.FixedLenFeature([seq_length], tf.int64),
      'segment_ids':
          tf.io.FixedLenFeature([seq_length], tf.int64),
      'masked_lm_positions':
          tf.io.FixedLenFeature([max_predictions_per_seq], tf.int64),
      'masked_lm_ids':
          tf.io.FixedLenFeature([max_predictions_per_seq], tf.int64),
      'masked_lm_weights':
          tf.io.FixedLenFeature([max_predictions_per_seq], tf.float32),
  }
85
86
87
  if use_next_sentence_label:
    name_to_features['next_sentence_labels'] = tf.io.FixedLenFeature([1],
                                                                     tf.int64)
Chen Chen's avatar
Chen Chen committed
88
89
90
  if use_position_id:
    name_to_features['position_ids'] = tf.io.FixedLenFeature([seq_length],
                                                             tf.int64)
Chen Chen's avatar
Chen Chen committed
91
92
93
94
  for input_pattern in input_patterns:
    if not tf.io.gfile.glob(input_pattern):
      raise ValueError('%s does not match any files.' % input_pattern)

95
  dataset = tf.data.Dataset.list_files(input_patterns, shuffle=is_training)
96
97
98
99

  if input_pipeline_context and input_pipeline_context.num_input_pipelines > 1:
    dataset = dataset.shard(input_pipeline_context.num_input_pipelines,
                            input_pipeline_context.input_pipeline_id)
Chen Chen's avatar
Chen Chen committed
100
101
  if is_training:
    dataset = dataset.repeat()
102

Chen Chen's avatar
Chen Chen committed
103
104
105
106
107
108
    # We set shuffle buffer to exactly match total number of
    # training files to ensure that training data is well shuffled.
    input_files = []
    for input_pattern in input_patterns:
      input_files.extend(tf.io.gfile.glob(input_pattern))
    dataset = dataset.shuffle(len(input_files))
109
110

  # In parallel, create tf record dataset for each train files.
Jing Li's avatar
Jing Li committed
111
112
113
  # cycle_length = 8 means that up to 8 files will be read and deserialized in
  # parallel. You may want to increase this number if you have a large number of
  # CPU cores.
114
  dataset = dataset.interleave(
Chen Chen's avatar
Chen Chen committed
115
116
      tf.data.TFRecordDataset,
      cycle_length=8,
Jing Li's avatar
Jing Li committed
117
      num_parallel_calls=tf.data.experimental.AUTOTUNE)
118

Chen Chen's avatar
Chen Chen committed
119
120
121
  if is_training:
    dataset = dataset.shuffle(100)

122
123
124
  decode_fn = lambda record: decode_record(record, name_to_features)
  dataset = dataset.map(
      decode_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE)
125
126
127
128
129
130
131
132
133
134
135

  def _select_data_from_record(record):
    """Filter out features to use for pretraining."""
    x = {
        'input_word_ids': record['input_ids'],
        'input_mask': record['input_mask'],
        'input_type_ids': record['segment_ids'],
        'masked_lm_positions': record['masked_lm_positions'],
        'masked_lm_ids': record['masked_lm_ids'],
        'masked_lm_weights': record['masked_lm_weights'],
    }
136
137
    if use_next_sentence_label:
      x['next_sentence_labels'] = record['next_sentence_labels']
Chen Chen's avatar
Chen Chen committed
138
139
    if use_position_id:
      x['position_ids'] = record['position_ids']
140

Hongkun Yu's avatar
Hongkun Yu committed
141
142
143
144
145
    # TODO(hongkuny): Remove the fake labels after migrating bert pretraining.
    if output_fake_labels:
      return (x, record['masked_lm_weights'])
    else:
      return x
146

147
148
149
  dataset = dataset.map(
      _select_data_from_record,
      num_parallel_calls=tf.data.experimental.AUTOTUNE)
Chen Chen's avatar
Chen Chen committed
150
  dataset = dataset.batch(batch_size, drop_remainder=is_training)
Chen Chen's avatar
Chen Chen committed
151
  dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
152
153
154
155
156
157
158
  return dataset


def create_classifier_dataset(file_path,
                              seq_length,
                              batch_size,
                              is_training=True,
159
                              input_pipeline_context=None,
160
                              label_type=tf.int64,
161
162
                              include_sample_weights=False,
                              num_samples=None):
163
164
165
166
167
  """Creates input dataset from (tf)records files for train/eval."""
  name_to_features = {
      'input_ids': tf.io.FixedLenFeature([seq_length], tf.int64),
      'input_mask': tf.io.FixedLenFeature([seq_length], tf.int64),
      'segment_ids': tf.io.FixedLenFeature([seq_length], tf.int64),
168
      'label_ids': tf.io.FixedLenFeature([], label_type),
169
  }
170
171
  if include_sample_weights:
    name_to_features['weight'] = tf.io.FixedLenFeature([], tf.float32)
172
173
  dataset = single_file_dataset(file_path, name_to_features,
                                num_samples=num_samples)
Hongkun Yu's avatar
Hongkun Yu committed
174
175
176
177
178
179

  # The dataset is always sharded by number of hosts.
  # num_input_pipelines is the number of hosts rather than number of cores.
  if input_pipeline_context and input_pipeline_context.num_input_pipelines > 1:
    dataset = dataset.shard(input_pipeline_context.num_input_pipelines,
                            input_pipeline_context.input_pipeline_id)
180
181
182
183
184
185
186
187

  def _select_data_from_record(record):
    x = {
        'input_word_ids': record['input_ids'],
        'input_mask': record['input_mask'],
        'input_type_ids': record['segment_ids']
    }
    y = record['label_ids']
188
189
190
    if include_sample_weights:
      w = record['weight']
      return (x, y, w)
191
192
193
194
195
196
    return (x, y)

  if is_training:
    dataset = dataset.shuffle(100)
    dataset = dataset.repeat()

Chen Chen's avatar
Chen Chen committed
197
198
199
  dataset = dataset.map(
      _select_data_from_record,
      num_parallel_calls=tf.data.experimental.AUTOTUNE)
Hongkun Yu's avatar
Hongkun Yu committed
200
  dataset = dataset.batch(batch_size, drop_remainder=is_training)
Chen Chen's avatar
Chen Chen committed
201
  dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
202
203
204
  return dataset


Hongkun Yu's avatar
Hongkun Yu committed
205
206
207
208
209
def create_squad_dataset(file_path,
                         seq_length,
                         batch_size,
                         is_training=True,
                         input_pipeline_context=None):
210
211
212
213
214
215
216
217
218
  """Creates input dataset from (tf)records files for train/eval."""
  name_to_features = {
      'input_ids': tf.io.FixedLenFeature([seq_length], tf.int64),
      'input_mask': tf.io.FixedLenFeature([seq_length], tf.int64),
      'segment_ids': tf.io.FixedLenFeature([seq_length], tf.int64),
  }
  if is_training:
    name_to_features['start_positions'] = tf.io.FixedLenFeature([], tf.int64)
    name_to_features['end_positions'] = tf.io.FixedLenFeature([], tf.int64)
219
220
  else:
    name_to_features['unique_ids'] = tf.io.FixedLenFeature([], tf.int64)
221

Hongkun Yu's avatar
Hongkun Yu committed
222
223
224
225
226
227
228
  dataset = single_file_dataset(file_path, name_to_features)

  # The dataset is always sharded by number of hosts.
  # num_input_pipelines is the number of hosts rather than number of cores.
  if input_pipeline_context and input_pipeline_context.num_input_pipelines > 1:
    dataset = dataset.shard(input_pipeline_context.num_input_pipelines,
                            input_pipeline_context.input_pipeline_id)
229
230

  def _select_data_from_record(record):
231
    """Dispatches record to features and labels."""
232
233
234
235
    x, y = {}, {}
    for name, tensor in record.items():
      if name in ('start_positions', 'end_positions'):
        y[name] = tensor
236
237
238
239
      elif name == 'input_ids':
        x['input_word_ids'] = tensor
      elif name == 'segment_ids':
        x['input_type_ids'] = tensor
240
241
242
243
244
245
246
247
      else:
        x[name] = tensor
    return (x, y)

  if is_training:
    dataset = dataset.shuffle(100)
    dataset = dataset.repeat()

Chen Chen's avatar
Chen Chen committed
248
249
250
  dataset = dataset.map(
      _select_data_from_record,
      num_parallel_calls=tf.data.experimental.AUTOTUNE)
251
  dataset = dataset.batch(batch_size, drop_remainder=True)
Chen Chen's avatar
Chen Chen committed
252
  dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
253
  return dataset
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289


def create_retrieval_dataset(file_path,
                             seq_length,
                             batch_size,
                             input_pipeline_context=None):
  """Creates input dataset from (tf)records files for scoring."""
  name_to_features = {
      'input_ids': tf.io.FixedLenFeature([seq_length], tf.int64),
      'input_mask': tf.io.FixedLenFeature([seq_length], tf.int64),
      'segment_ids': tf.io.FixedLenFeature([seq_length], tf.int64),
      'int_iden': tf.io.FixedLenFeature([1], tf.int64),
  }
  dataset = single_file_dataset(file_path, name_to_features)

  # The dataset is always sharded by number of hosts.
  # num_input_pipelines is the number of hosts rather than number of cores.
  if input_pipeline_context and input_pipeline_context.num_input_pipelines > 1:
    dataset = dataset.shard(input_pipeline_context.num_input_pipelines,
                            input_pipeline_context.input_pipeline_id)

  def _select_data_from_record(record):
    x = {
        'input_word_ids': record['input_ids'],
        'input_mask': record['input_mask'],
        'input_type_ids': record['segment_ids']
    }
    y = record['int_iden']
    return (x, y)

  dataset = dataset.map(
      _select_data_from_record,
      num_parallel_calls=tf.data.experimental.AUTOTUNE)
  dataset = dataset.batch(batch_size, drop_remainder=False)
  dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
  return dataset