input_pipeline.py 7.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT model input pipelines."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf


24
25
26
27
28
29
30
31
32
33
34
def decode_record(record, name_to_features):
  """Decodes a record to a TensorFlow example."""
  example = tf.io.parse_single_example(record, name_to_features)

  # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
  # So cast all int64 to int32.
  for name in list(example.keys()):
    t = example[name]
    if t.dtype == tf.int64:
      t = tf.cast(t, tf.int32)
    example[name] = t
35

36
  return example
37
38


39
40
def file_based_input_fn_builder(input_file, name_to_features):
  """Creates an `input_fn` closure to be passed for BERT custom training."""
41
42
43
44
45
46

  def input_fn():
    """Returns dataset for training/evaluation."""
    # For training, we want a lot of parallel reading and shuffling.
    # For eval, we want no shuffling and parallel reading doesn't matter.
    d = tf.data.TFRecordDataset(input_file)
47
    d = d.map(lambda record: decode_record(record, name_to_features))
48
49
50
51
52
53

    # When `input_file` is a path to a single file or a list
    # containing a single path, disable auto sharding so that
    # same input file is sent to all workers.
    if isinstance(input_file, str) or len(input_file) == 1:
      options = tf.data.Options()
54
55
      options.experimental_distribute.auto_shard_policy = (
          tf.data.experimental.AutoShardPolicy.OFF)
56
57
58
59
60
61
      d = d.with_options(options)
    return d

  return input_fn


62
def create_pretrain_dataset(input_patterns,
63
64
65
                            seq_length,
                            max_predictions_per_seq,
                            batch_size,
66
67
                            is_training=True,
                            input_pipeline_context=None):
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
  """Creates input dataset from (tf)records files for pretraining."""
  name_to_features = {
      'input_ids':
          tf.io.FixedLenFeature([seq_length], tf.int64),
      'input_mask':
          tf.io.FixedLenFeature([seq_length], tf.int64),
      'segment_ids':
          tf.io.FixedLenFeature([seq_length], tf.int64),
      'masked_lm_positions':
          tf.io.FixedLenFeature([max_predictions_per_seq], tf.int64),
      'masked_lm_ids':
          tf.io.FixedLenFeature([max_predictions_per_seq], tf.int64),
      'masked_lm_weights':
          tf.io.FixedLenFeature([max_predictions_per_seq], tf.float32),
      'next_sentence_labels':
          tf.io.FixedLenFeature([1], tf.int64),
  }

86
  dataset = tf.data.Dataset.list_files(input_patterns, shuffle=is_training)
87
88
89
90
91
92

  if input_pipeline_context and input_pipeline_context.num_input_pipelines > 1:
    dataset = dataset.shard(input_pipeline_context.num_input_pipelines,
                            input_pipeline_context.input_pipeline_id)

  dataset = dataset.repeat()
93

94
95
  # We set shuffle buffer to exactly match total number of
  # training files to ensure that training data is well shuffled.
96
97
98
99
  input_files = []
  for input_pattern in input_patterns:
    input_files.extend(tf.io.gfile.glob(input_pattern))
  dataset = dataset.shuffle(len(input_files))
100
101

  # In parallel, create tf record dataset for each train files.
Jing Li's avatar
Jing Li committed
102
103
104
  # cycle_length = 8 means that up to 8 files will be read and deserialized in
  # parallel. You may want to increase this number if you have a large number of
  # CPU cores.
105
  dataset = dataset.interleave(
Jing Li's avatar
Jing Li committed
106
107
      tf.data.TFRecordDataset, cycle_length=8,
      num_parallel_calls=tf.data.experimental.AUTOTUNE)
108
109
110
111

  decode_fn = lambda record: decode_record(record, name_to_features)
  dataset = dataset.map(
      decode_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE)
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

  def _select_data_from_record(record):
    """Filter out features to use for pretraining."""
    x = {
        'input_word_ids': record['input_ids'],
        'input_mask': record['input_mask'],
        'input_type_ids': record['segment_ids'],
        'masked_lm_positions': record['masked_lm_positions'],
        'masked_lm_ids': record['masked_lm_ids'],
        'masked_lm_weights': record['masked_lm_weights'],
        'next_sentence_labels': record['next_sentence_labels'],
    }

    y = record['masked_lm_weights']

    return (x, y)

129
130
131
  dataset = dataset.map(
      _select_data_from_record,
      num_parallel_calls=tf.data.experimental.AUTOTUNE)
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

  if is_training:
    dataset = dataset.shuffle(100)

  dataset = dataset.batch(batch_size, drop_remainder=True)
  dataset = dataset.prefetch(1024)
  return dataset


def create_classifier_dataset(file_path,
                              seq_length,
                              batch_size,
                              is_training=True,
                              drop_remainder=True):
  """Creates input dataset from (tf)records files for train/eval."""
  name_to_features = {
      'input_ids': tf.io.FixedLenFeature([seq_length], tf.int64),
      'input_mask': tf.io.FixedLenFeature([seq_length], tf.int64),
      'segment_ids': tf.io.FixedLenFeature([seq_length], tf.int64),
      'label_ids': tf.io.FixedLenFeature([], tf.int64),
      'is_real_example': tf.io.FixedLenFeature([], tf.int64),
  }
  input_fn = file_based_input_fn_builder(file_path, name_to_features)
  dataset = input_fn()

  def _select_data_from_record(record):
    x = {
        'input_word_ids': record['input_ids'],
        'input_mask': record['input_mask'],
        'input_type_ids': record['segment_ids']
    }
    y = record['label_ids']
    return (x, y)

  dataset = dataset.map(_select_data_from_record)

  if is_training:
    dataset = dataset.shuffle(100)
    dataset = dataset.repeat()

  dataset = dataset.batch(batch_size, drop_remainder=drop_remainder)
  dataset = dataset.prefetch(1024)
  return dataset


def create_squad_dataset(file_path, seq_length, batch_size, is_training=True):
  """Creates input dataset from (tf)records files for train/eval."""
  name_to_features = {
      'input_ids': tf.io.FixedLenFeature([seq_length], tf.int64),
      'input_mask': tf.io.FixedLenFeature([seq_length], tf.int64),
      'segment_ids': tf.io.FixedLenFeature([seq_length], tf.int64),
  }
  if is_training:
    name_to_features['start_positions'] = tf.io.FixedLenFeature([], tf.int64)
    name_to_features['end_positions'] = tf.io.FixedLenFeature([], tf.int64)
187
188
  else:
    name_to_features['unique_ids'] = tf.io.FixedLenFeature([], tf.int64)
189
190
191
192
193

  input_fn = file_based_input_fn_builder(file_path, name_to_features)
  dataset = input_fn()

  def _select_data_from_record(record):
194
    """Dispatches record to features and labels."""
195
196
197
198
    x, y = {}, {}
    for name, tensor in record.items():
      if name in ('start_positions', 'end_positions'):
        y[name] = tensor
199
200
201
202
      elif name == 'input_ids':
        x['input_word_ids'] = tensor
      elif name == 'segment_ids':
        x['input_type_ids'] = tensor
203
204
205
206
207
208
209
210
211
212
213
214
215
      else:
        x[name] = tensor
    return (x, y)

  dataset = dataset.map(_select_data_from_record)

  if is_training:
    dataset = dataset.shuffle(100)
    dataset = dataset.repeat()

  dataset = dataset.batch(batch_size, drop_remainder=True)
  dataset = dataset.prefetch(1024)
  return dataset