synthetic_transits.py 2.63 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2018 The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Synthetic transit inputs to the AstroWaveNet model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tensorflow as tf

24
from tf_util import configdict
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from astrowavenet.data import base
from astrowavenet.data import synthetic_transit_maker


def _prepare_wavenet_inputs(light_curve, mask):
  """Gathers synthetic transits into the format expected by AstroWaveNet."""
  return {
      "autoregressive_input": tf.expand_dims(light_curve, -1),
      "conditioning_stack": tf.expand_dims(mask, -1),
  }


class SyntheticTransits(base.DatasetBuilder):
  """Synthetic transit inputs to the AstroWaveNet model."""

  @staticmethod
  def default_config():
    return configdict.ConfigDict({
        "period_range": (0.5, 4),
        "amplitude_range": (1, 1),
        "threshold_ratio_range": (0, 0.99),
        "phase_range": (0, 1),
        "noise_sd_range": (0.1, 0.1),
        "mask_probability": 0.1,
        "light_curve_time_range": (0, 100),
        "light_curve_num_points": 1000
    })

  def build(self, batch_size):
    transit_maker = synthetic_transit_maker.SyntheticTransitMaker(
        period_range=self.config.period_range,
        amplitude_range=self.config.amplitude_range,
        threshold_ratio_range=self.config.threshold_ratio_range,
        phase_range=self.config.phase_range,
        noise_sd_range=self.config.noise_sd_range)
    t_start, t_end = self.config.light_curve_time_range
    time = np.linspace(t_start, t_end, self.config.light_curve_num_points)
    dataset = tf.data.Dataset.from_generator(
        transit_maker.random_light_curve_generator(
            time, mask_prob=self.config.mask_probability),
        output_types=(tf.float32, tf.float32),
        output_shapes=(tf.TensorShape((self.config.light_curve_num_points,)),
                       tf.TensorShape((self.config.light_curve_num_points,))))
    dataset = dataset.map(_prepare_wavenet_inputs)
    dataset = dataset.batch(batch_size, drop_remainder=True)
    dataset = dataset.prefetch(-1)

    return dataset