Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
763663de
Commit
763663de
authored
Oct 16, 2018
by
Chris Shallue
Committed by
Christopher Shallue
Oct 16, 2018
Browse files
Project import generated by Copybara.
PiperOrigin-RevId: 217341274
parent
ca2db9bd
Changes
21
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2464 additions
and
84 deletions
+2464
-84
research/astronet/README.md
research/astronet/README.md
+5
-1
research/astronet/astronet/util/config_util.py
research/astronet/astronet/util/config_util.py
+9
-4
research/astronet/astrowavenet/BUILD
research/astronet/astrowavenet/BUILD
+21
-5
research/astronet/astrowavenet/README.md
research/astronet/astrowavenet/README.md
+44
-0
research/astronet/astrowavenet/__init__.py
research/astronet/astrowavenet/__init__.py
+14
-0
research/astronet/astrowavenet/astrowavenet_model.py
research/astronet/astrowavenet/astrowavenet_model.py
+56
-44
research/astronet/astrowavenet/astrowavenet_model_test.py
research/astronet/astrowavenet/astrowavenet_model_test.py
+631
-0
research/astronet/astrowavenet/data/BUILD
research/astronet/astrowavenet/data/BUILD
+42
-0
research/astronet/astrowavenet/data/__init__.py
research/astronet/astrowavenet/data/__init__.py
+14
-0
research/astronet/astrowavenet/data/base.py
research/astronet/astrowavenet/data/base.py
+240
-0
research/astronet/astrowavenet/data/base_test.py
research/astronet/astrowavenet/data/base_test.py
+778
-0
research/astronet/astrowavenet/data/kepler_light_curves.py
research/astronet/astrowavenet/data/kepler_light_curves.py
+50
-0
research/astronet/astrowavenet/data/synthetic_transit_maker.py
...rch/astronet/astrowavenet/data/synthetic_transit_maker.py
+3
-3
research/astronet/astrowavenet/data/synthetic_transit_maker_test.py
...stronet/astrowavenet/data/synthetic_transit_maker_test.py
+8
-8
research/astronet/astrowavenet/data/synthetic_transits.py
research/astronet/astrowavenet/data/synthetic_transits.py
+72
-0
research/astronet/astrowavenet/data/test_data/test-dataset.tfrecord
...stronet/astrowavenet/data/test_data/test-dataset.tfrecord
+0
-0
research/astronet/astrowavenet/trainer.py
research/astronet/astrowavenet/trainer.py
+272
-0
research/astronet/astrowavenet/util/BUILD
research/astronet/astrowavenet/util/BUILD
+10
-0
research/astronet/astrowavenet/util/estimator_util.py
research/astronet/astrowavenet/util/estimator_util.py
+178
-0
research/astronet/light_curve_util/util.py
research/astronet/light_curve_util/util.py
+17
-19
No files found.
research/astronet/README.md
View file @
763663de
...
@@ -40,6 +40,10 @@ Full text available at [*The Astronomical Journal*](http://iopscience.iop.org/ar
...
@@ -40,6 +40,10 @@ Full text available at [*The Astronomical Journal*](http://iopscience.iop.org/ar
*
Training and evaluating a new model.
*
Training and evaluating a new model.
*
Using a trained model to generate new predictions.
*
Using a trained model to generate new predictions.
[
astrowavenet/
](
astrowavenet/
)
*
A generative model for light curves.
[
light_curve_util/
](
light_curve_util
)
[
light_curve_util/
](
light_curve_util
)
*
Utilities for operating on light curves. These include:
*
Utilities for operating on light curves. These include:
...
@@ -63,11 +67,11 @@ First, ensure that you have installed the following required packages:
...
@@ -63,11 +67,11 @@ First, ensure that you have installed the following required packages:
*
**TensorFlow**
(
[
instructions
](
https://www.tensorflow.org/install/
)
)
*
**TensorFlow**
(
[
instructions
](
https://www.tensorflow.org/install/
)
)
*
**Pandas**
(
[
instructions
](
http://pandas.pydata.org/pandas-docs/stable/install.html
)
)
*
**Pandas**
(
[
instructions
](
http://pandas.pydata.org/pandas-docs/stable/install.html
)
)
*
**NumPy**
(
[
instructions
](
https://docs.scipy.org/doc/numpy/user/install.html
)
)
*
**NumPy**
(
[
instructions
](
https://docs.scipy.org/doc/numpy/user/install.html
)
)
*
**SciPy**
(
[
instructions
](
https://scipy.org/install.html
)
)
*
**AstroPy**
(
[
instructions
](
http://www.astropy.org/
)
)
*
**AstroPy**
(
[
instructions
](
http://www.astropy.org/
)
)
*
**PyDl**
(
[
instructions
](
https://pypi.python.org/pypi/pydl
)
)
*
**PyDl**
(
[
instructions
](
https://pypi.python.org/pypi/pydl
)
)
*
**Bazel**
(
[
instructions
](
https://docs.bazel.build/versions/master/install.html
)
)
*
**Bazel**
(
[
instructions
](
https://docs.bazel.build/versions/master/install.html
)
)
*
**Abseil Python Common Libraries**
(
[
instructions
](
https://github.com/abseil/abseil-py
)
)
*
**Abseil Python Common Libraries**
(
[
instructions
](
https://github.com/abseil/abseil-py
)
)
*
Optional: only required for unit tests.
### Optional: Run Unit Tests
### Optional: Run Unit Tests
...
...
research/astronet/astronet/util/config_util.py
View file @
763663de
...
@@ -63,6 +63,14 @@ def parse_json(json_string_or_file):
...
@@ -63,6 +63,14 @@ def parse_json(json_string_or_file):
return
json_dict
return
json_dict
def
to_json
(
config
):
"""Converts a JSON-serializable configuration object to a JSON string."""
if
hasattr
(
config
,
"to_json"
)
and
callable
(
config
.
to_json
):
return
config
.
to_json
(
indent
=
2
)
else
:
return
json
.
dumps
(
config
,
indent
=
2
)
def
log_and_save_config
(
config
,
output_dir
):
def
log_and_save_config
(
config
,
output_dir
):
"""Logs and writes a JSON-serializable configuration object.
"""Logs and writes a JSON-serializable configuration object.
...
@@ -70,10 +78,7 @@ def log_and_save_config(config, output_dir):
...
@@ -70,10 +78,7 @@ def log_and_save_config(config, output_dir):
config: A JSON-serializable object.
config: A JSON-serializable object.
output_dir: Destination directory.
output_dir: Destination directory.
"""
"""
if
hasattr
(
config
,
"to_json"
)
and
callable
(
config
.
to_json
):
config_json
=
to_json
(
config
)
config_json
=
config
.
to_json
(
indent
=
2
)
else
:
config_json
=
json
.
dumps
(
config
,
indent
=
2
)
tf
.
logging
.
info
(
"config: %s"
,
config_json
)
tf
.
logging
.
info
(
"config: %s"
,
config_json
)
tf
.
gfile
.
MakeDirs
(
output_dir
)
tf
.
gfile
.
MakeDirs
(
output_dir
)
...
...
research/astronet/astrowavenet/BUILD
View file @
763663de
...
@@ -4,6 +4,22 @@ package(default_visibility = ["//visibility:public"])
...
@@ -4,6 +4,22 @@ package(default_visibility = ["//visibility:public"])
licenses
([
"notice"
])
# Apache 2.0
licenses
([
"notice"
])
# Apache 2.0
py_binary
(
name
=
"trainer"
,
srcs
=
[
"trainer.py"
],
srcs_version
=
"PY2AND3"
,
deps
=
[
":astrowavenet_model"
,
":configurations"
,
"//astronet/util:config_util"
,
"//astronet/util:configdict"
,
"//astronet/util:estimator_runner"
,
"//astrowavenet/data:kepler_light_curves"
,
"//astrowavenet/data:synthetic_transits"
,
"//astrowavenet/util:estimator_util"
,
],
)
py_library
(
py_library
(
name
=
"configurations"
,
name
=
"configurations"
,
srcs
=
[
"configurations.py"
],
srcs
=
[
"configurations.py"
],
...
@@ -11,22 +27,22 @@ py_library(
...
@@ -11,22 +27,22 @@ py_library(
)
)
py_library
(
py_library
(
name
=
"astrowavenet"
,
name
=
"astrowavenet
_model
"
,
srcs
=
[
srcs
=
[
"astrowavenet.py"
,
"astrowavenet
_model
.py"
,
],
],
srcs_version
=
"PY2AND3"
,
srcs_version
=
"PY2AND3"
,
)
)
py_test
(
py_test
(
name
=
"astrowavenet_test"
,
name
=
"astrowavenet_
model_
test"
,
size
=
"small"
,
size
=
"small"
,
srcs
=
[
srcs
=
[
"astrowavenet_test.py"
,
"astrowavenet_
model_
test.py"
,
],
],
srcs_version
=
"PY2AND3"
,
srcs_version
=
"PY2AND3"
,
deps
=
[
deps
=
[
":astrowavenet"
,
":astrowavenet
_model
"
,
":configurations"
,
":configurations"
,
"//astronet/util:configdict"
,
"//astronet/util:configdict"
,
],
],
...
...
research/astronet/astrowavenet/README.md
0 → 100644
View file @
763663de
# AstroWaveNet: A generative model for light curves.
Implementation based on "WaveNet: A Generative Model of Raw Audio":
https://arxiv.org/abs/1609.03499
## Code Authors
Alex Tamkin:
[
@atamkin
](
https://github.com/atamkin
)
Chris Shallue:
[
@cshallue
](
https://github.com/cshallue
)
## Pull Requests / Issues
Chris Shallue:
[
@cshallue
](
https://github.com/cshallue
)
## Additional Dependencies
This package requires TensorFlow 1.12 or greater. As of October 2018, this
requires the
**TensorFlow nightly build**
(
[
instructions
](
https://www.tensorflow.org/install/pip
)
).
In addition to the dependencies listed in the top-level README, this package
requires:
*
**TensorFlow Probability**
(
[
instructions
](
https://www.tensorflow.org/probability/install
)
)
*
**Six**
(
[
instructions
](
https://pypi.org/project/six/
)
)
## Basic Usage
To train a model on synthetic transits:
```
bash
bazel build astrowavenet/...
```
```
bash
bazel-bin/astrowavenet/trainer
\
--dataset
=
synthetic_transits
\
--model_dir
=
/tmp/astrowavenet/
\
--config_overrides
=
'{"hparams": {"batch_size": 16, "num_residual_blocks": 2}}'
\
--schedule
=
train_and_eval
\
--eval_steps
=
100
\
--save_checkpoints_steps
=
1000
```
research/astronet/astrowavenet/__init__.py
0 → 100644
View file @
763663de
# Copyright 2018 The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
research/astronet/astrowavenet/astrowavenet.py
→
research/astronet/astrowavenet/astrowavenet
_model
.py
View file @
763663de
...
@@ -23,6 +23,7 @@ from __future__ import division
...
@@ -23,6 +23,7 @@ from __future__ import division
from
__future__
import
print_function
from
__future__
import
print_function
import
tensorflow
as
tf
import
tensorflow
as
tf
import
tensorflow_probability
as
tfp
def
_shift_right
(
x
):
def
_shift_right
(
x
):
...
@@ -64,18 +65,21 @@ class AstroWaveNet(object):
...
@@ -64,18 +65,21 @@ class AstroWaveNet(object):
tf
.
estimator
.
ModeKeys
.
PREDICT
tf
.
estimator
.
ModeKeys
.
PREDICT
]
]
if
mode
not
in
valid_modes
:
if
mode
not
in
valid_modes
:
raise
ValueError
(
'
Expected mode in {}. Got: {}
'
.
format
(
valid_modes
,
mode
))
raise
ValueError
(
"
Expected mode in {}. Got: {}
"
.
format
(
valid_modes
,
mode
))
self
.
hparams
=
hparams
self
.
hparams
=
hparams
self
.
mode
=
mode
self
.
mode
=
mode
self
.
autoregressive_input
=
features
[
'
autoregressive_input
'
]
self
.
autoregressive_input
=
features
[
"
autoregressive_input
"
]
self
.
conditioning_stack
=
features
[
'
conditioning_stack
'
]
self
.
conditioning_stack
=
features
[
"
conditioning_stack
"
]
self
.
weights
=
features
.
get
(
'
weights
'
)
self
.
weights
=
features
.
get
(
"
weights
"
)
self
.
network_output
=
None
# Sum of skip connections from dilation stack.
self
.
network_output
=
None
# Sum of skip connections from dilation stack.
self
.
dist_params
=
None
# Dict of predicted distribution parameters.
self
.
predicted_distributions
=
None
# Predicted distribution for examples.
self
.
predicted_distributions
=
None
# Predicted distribution for examples.
self
.
autoregressive_target
=
None
# Autoregressive target predictions.
self
.
batch_losses
=
None
# Loss for each predicted distribution in batch.
self
.
batch_losses
=
None
# Loss for each predicted distribution in batch.
self
.
per_example_loss
=
None
# Loss for each example in batch.
self
.
per_example_loss
=
None
# Loss for each example in batch.
self
.
num_nonzero_weight_examples
=
None
# Number of examples in batch.
self
.
total_loss
=
None
# Overall loss for the batch.
self
.
total_loss
=
None
# Overall loss for the batch.
self
.
global_step
=
None
# Global step Tensor.
self
.
global_step
=
None
# Global step Tensor.
...
@@ -94,9 +98,9 @@ class AstroWaveNet(object):
...
@@ -94,9 +98,9 @@ class AstroWaveNet(object):
causal_conv_op
=
tf
.
keras
.
layers
.
Conv1D
(
causal_conv_op
=
tf
.
keras
.
layers
.
Conv1D
(
output_size
,
output_size
,
kernel_width
,
kernel_width
,
padding
=
'
causal
'
,
padding
=
"
causal
"
,
dilation_rate
=
dilation_rate
,
dilation_rate
=
dilation_rate
,
name
=
'
causal_conv
'
)
name
=
"
causal_conv
"
)
return
causal_conv_op
(
x
)
return
causal_conv_op
(
x
)
def
conv_1x1_layer
(
self
,
x
,
output_size
,
activation
=
None
):
def
conv_1x1_layer
(
self
,
x
,
output_size
,
activation
=
None
):
...
@@ -111,7 +115,7 @@ class AstroWaveNet(object):
...
@@ -111,7 +115,7 @@ class AstroWaveNet(object):
Resulting tf.Tensor after applying the 1x1 convolution.
Resulting tf.Tensor after applying the 1x1 convolution.
"""
"""
conv_1x1_op
=
tf
.
keras
.
layers
.
Conv1D
(
conv_1x1_op
=
tf
.
keras
.
layers
.
Conv1D
(
output_size
,
1
,
activation
=
activation
,
name
=
'
conv1x1
'
)
output_size
,
1
,
activation
=
activation
,
name
=
"
conv1x1
"
)
return
conv_1x1_op
(
x
)
return
conv_1x1_op
(
x
)
def
gated_residual_layer
(
self
,
x
,
dilation_rate
):
def
gated_residual_layer
(
self
,
x
,
dilation_rate
):
...
@@ -125,24 +129,26 @@ class AstroWaveNet(object):
...
@@ -125,24 +129,26 @@ class AstroWaveNet(object):
skip_connection: tf.Tensor; Skip connection to network_output layer.
skip_connection: tf.Tensor; Skip connection to network_output layer.
residual_connection: tf.Tensor; Sum of learned residual and input tensor.
residual_connection: tf.Tensor; Sum of learned residual and input tensor.
"""
"""
with
tf
.
variable_scope
(
'filter'
):
with
tf
.
variable_scope
(
"filter"
):
x_filter_conv
=
self
.
causal_conv_layer
(
x
,
int
(
x_filter_conv
=
self
.
causal_conv_layer
(
x
,
x
.
shape
[
-
1
].
value
,
x
.
shape
[
-
1
]),
self
.
hparams
.
dilation_kernel_width
,
dilation_rate
)
self
.
hparams
.
dilation_kernel_width
,
dilation_rate
)
cond_filter_conv
=
self
.
conv_1x1_layer
(
self
.
conditioning_stack
,
cond_filter_conv
=
self
.
conv_1x1_layer
(
self
.
conditioning_stack
,
int
(
x
.
shape
[
-
1
]))
x
.
shape
[
-
1
].
value
)
with
tf
.
variable_scope
(
'gate'
):
with
tf
.
variable_scope
(
"gate"
):
x_gate_conv
=
self
.
causal_conv_layer
(
x
,
int
(
x_gate_conv
=
self
.
causal_conv_layer
(
x
,
x
.
shape
[
-
1
].
value
,
x
.
shape
[
-
1
]),
self
.
hparams
.
dilation_kernel_width
,
dilation_rate
)
self
.
hparams
.
dilation_kernel_width
,
dilation_rate
)
cond_gate_conv
=
self
.
conv_1x1_layer
(
self
.
conditioning_stack
,
cond_gate_conv
=
self
.
conv_1x1_layer
(
self
.
conditioning_stack
,
int
(
x
.
shape
[
-
1
]
)
)
x
.
shape
[
-
1
]
.
value
)
gated_activation
=
(
gated_activation
=
(
tf
.
tanh
(
x_filter_conv
+
cond_filter_conv
)
*
tf
.
tanh
(
x_filter_conv
+
cond_filter_conv
)
*
tf
.
sigmoid
(
x_gate_conv
+
cond_gate_conv
))
tf
.
sigmoid
(
x_gate_conv
+
cond_gate_conv
))
with
tf
.
variable_scope
(
'
residual
'
):
with
tf
.
variable_scope
(
"
residual
"
):
residual
=
self
.
conv_1x1_layer
(
gated_activation
,
int
(
x
.
shape
[
-
1
]
)
)
residual
=
self
.
conv_1x1_layer
(
gated_activation
,
x
.
shape
[
-
1
]
.
value
)
with
tf
.
variable_scope
(
'
skip
'
):
with
tf
.
variable_scope
(
"
skip
"
):
skip_connection
=
self
.
conv_1x1_layer
(
gated_activation
,
skip_connection
=
self
.
conv_1x1_layer
(
gated_activation
,
self
.
hparams
.
skip_output_dim
)
self
.
hparams
.
skip_output_dim
)
...
@@ -167,13 +173,13 @@ class AstroWaveNet(object):
...
@@ -167,13 +173,13 @@ class AstroWaveNet(object):
"""
"""
skip_connections
=
[]
skip_connections
=
[]
x
=
_shift_right
(
self
.
autoregressive_input
)
x
=
_shift_right
(
self
.
autoregressive_input
)
with
tf
.
variable_scope
(
'
preprocess
'
):
with
tf
.
variable_scope
(
"
preprocess
"
):
x
=
self
.
causal_conv_layer
(
x
,
self
.
hparams
.
preprocess_output_size
,
x
=
self
.
causal_conv_layer
(
x
,
self
.
hparams
.
preprocess_output_size
,
self
.
hparams
.
preprocess_kernel_width
)
self
.
hparams
.
preprocess_kernel_width
)
for
i
in
range
(
self
.
hparams
.
num_residual_blocks
):
for
i
in
range
(
self
.
hparams
.
num_residual_blocks
):
with
tf
.
variable_scope
(
'
block_{}
'
.
format
(
i
)):
with
tf
.
variable_scope
(
"
block_{}
"
.
format
(
i
)):
for
dilation_rate
in
self
.
hparams
.
dilation_rates
:
for
dilation_rate
in
self
.
hparams
.
dilation_rates
:
with
tf
.
variable_scope
(
'
dilation_{}
'
.
format
(
dilation_rate
)):
with
tf
.
variable_scope
(
"
dilation_{}
"
.
format
(
dilation_rate
)):
skip_connection
,
x
=
self
.
gated_residual_layer
(
x
,
dilation_rate
)
skip_connection
,
x
=
self
.
gated_residual_layer
(
x
,
dilation_rate
)
skip_connections
.
append
(
skip_connection
)
skip_connections
.
append
(
skip_connection
)
...
@@ -192,7 +198,7 @@ class AstroWaveNet(object):
...
@@ -192,7 +198,7 @@ class AstroWaveNet(object):
The parameters of each distribution, a tensor of shape [batch_size,
The parameters of each distribution, a tensor of shape [batch_size,
time_series_length, outputs_size].
time_series_length, outputs_size].
"""
"""
with
tf
.
variable_scope
(
'
dist_params
'
):
with
tf
.
variable_scope
(
"
dist_params
"
):
conv_outputs
=
self
.
conv_1x1_layer
(
x
,
outputs_size
)
conv_outputs
=
self
.
conv_1x1_layer
(
x
,
outputs_size
)
return
conv_outputs
return
conv_outputs
...
@@ -212,36 +218,40 @@ class AstroWaveNet(object):
...
@@ -212,36 +218,40 @@ class AstroWaveNet(object):
self.network_outputs
self.network_outputs
Outputs:
Outputs:
self.dist_params
self.predicted_distributions
self.predicted_distributions
Raises:
Raises:
ValueError: If distribution type is neither 'categorical' nor 'normal'.
ValueError: If distribution type is neither 'categorical' nor 'normal'.
"""
"""
with
tf
.
variable_scope
(
'
postprocess
'
):
with
tf
.
variable_scope
(
"
postprocess
"
):
network_output
=
tf
.
keras
.
activations
.
relu
(
self
.
network_output
)
network_output
=
tf
.
keras
.
activations
.
relu
(
self
.
network_output
)
network_output
=
self
.
conv_1x1_layer
(
network_output
=
self
.
conv_1x1_layer
(
network_output
,
network_output
,
output_size
=
int
(
network_output
.
shape
[
-
1
]
)
,
output_size
=
network_output
.
shape
[
-
1
]
.
value
,
activation
=
'
relu
'
)
activation
=
"
relu
"
)
num_dists
=
int
(
self
.
autoregressive_input
.
shape
[
-
1
]
)
num_dists
=
self
.
autoregressive_input
.
shape
[
-
1
]
.
value
if
self
.
hparams
.
output_distribution
.
type
==
'
categorical
'
:
if
self
.
hparams
.
output_distribution
.
type
==
"
categorical
"
:
num_classes
=
self
.
hparams
.
output_distribution
.
num_classes
num_classes
=
self
.
hparams
.
output_distribution
.
num_classes
dist_params
=
self
.
dist_params_layer
(
network_output
,
logits
=
self
.
dist_params_layer
(
network_output
,
num_dists
*
num_classes
)
num_dists
*
num_classes
)
logits_shape
=
tf
.
concat
(
dist_shape
=
tf
.
concat
(
[
tf
.
shape
(
network_output
)[:
-
1
],
[
num_dists
,
num_classes
]],
0
)
[
tf
.
shape
(
network_output
)[:
-
1
],
[
num_dists
,
num_classes
]],
0
)
dist_params
=
tf
.
reshape
(
dist_params
,
dist_shape
)
logits
=
tf
.
reshape
(
logits
,
logits_shape
)
dist
=
tf
.
distributions
.
Categorical
(
logits
=
dist_params
)
dist
=
tfp
.
distributions
.
Categorical
(
logits
=
logits
)
elif
self
.
hparams
.
output_distribution
.
type
==
'normal'
:
dist_params
=
{
"logits"
:
logits
}
dist_params
=
self
.
dist_params_layer
(
network_output
,
num_dists
*
2
)
elif
self
.
hparams
.
output_distribution
.
type
==
"normal"
:
loc
,
scale
=
tf
.
split
(
dist_params
,
2
,
axis
=-
1
)
loc_scale
=
self
.
dist_params_layer
(
network_output
,
num_dists
*
2
)
loc
,
scale
=
tf
.
split
(
loc_scale
,
2
,
axis
=-
1
)
# Ensure scale is positive.
# Ensure scale is positive.
scale
=
tf
.
nn
.
softplus
(
scale
)
+
self
.
hparams
.
output_distribution
.
min_scale
scale
=
tf
.
nn
.
softplus
(
scale
)
+
self
.
hparams
.
output_distribution
.
min_scale
dist
=
tf
.
distributions
.
Normal
(
loc
,
scale
)
dist
=
tfp
.
distributions
.
Normal
(
loc
,
scale
)
dist_params
=
{
"loc"
:
loc
,
"scale"
:
scale
}
else
:
else
:
raise
ValueError
(
'
Unsupported distribution type {}
'
.
format
(
raise
ValueError
(
"
Unsupported distribution type {}
"
.
format
(
self
.
hparams
.
output_distribution
.
type
))
self
.
hparams
.
output_distribution
.
type
))
self
.
dist_params
=
dist_params
self
.
predicted_distributions
=
dist
self
.
predicted_distributions
=
dist
def
build_losses
(
self
):
def
build_losses
(
self
):
...
@@ -257,7 +267,7 @@ class AstroWaveNet(object):
...
@@ -257,7 +267,7 @@ class AstroWaveNet(object):
autoregressive_target
=
self
.
autoregressive_input
autoregressive_target
=
self
.
autoregressive_input
# Quantize the target if the output distribution is categorical.
# Quantize the target if the output distribution is categorical.
if
self
.
hparams
.
output_distribution
.
type
==
'
categorical
'
:
if
self
.
hparams
.
output_distribution
.
type
==
"
categorical
"
:
min_val
=
self
.
hparams
.
output_distribution
.
min_quantization_value
min_val
=
self
.
hparams
.
output_distribution
.
min_quantization_value
max_val
=
self
.
hparams
.
output_distribution
.
max_quantization_value
max_val
=
self
.
hparams
.
output_distribution
.
max_quantization_value
num_classes
=
self
.
hparams
.
output_distribution
.
num_classes
num_classes
=
self
.
hparams
.
output_distribution
.
num_classes
...
@@ -270,7 +280,7 @@ class AstroWaveNet(object):
...
@@ -270,7 +280,7 @@ class AstroWaveNet(object):
# final quantized bucket a closed interval while all the other quantized
# final quantized bucket a closed interval while all the other quantized
# buckets are half-open intervals.
# buckets are half-open intervals.
quantized_target
=
tf
.
where
(
quantized_target
=
tf
.
where
(
quantized_target
=
=
num_classes
,
quantized_target
>
=
num_classes
,
tf
.
ones_like
(
quantized_target
)
*
(
num_classes
-
1
),
quantized_target
)
tf
.
ones_like
(
quantized_target
)
*
(
num_classes
-
1
),
quantized_target
)
autoregressive_target
=
quantized_target
autoregressive_target
=
quantized_target
...
@@ -280,22 +290,24 @@ class AstroWaveNet(object):
...
@@ -280,22 +290,24 @@ class AstroWaveNet(object):
if
weights
is
None
:
if
weights
is
None
:
weights
=
tf
.
ones_like
(
log_prob
)
weights
=
tf
.
ones_like
(
log_prob
)
weights_dim
=
len
(
weights
.
shape
)
weights_dim
=
len
(
weights
.
shape
)
per_example_weight
=
tf
.
reduce_sum
(
weights
,
axis
=
range
(
1
,
weights_dim
))
per_example_weight
=
tf
.
reduce_sum
(
weights
,
axis
=
list
(
range
(
1
,
weights_dim
)))
per_example_indicator
=
tf
.
to_float
(
tf
.
greater
(
per_example_weight
,
0
))
per_example_indicator
=
tf
.
to_float
(
tf
.
greater
(
per_example_weight
,
0
))
num_examples
=
tf
.
reduce_sum
(
num_examples
=
tf
.
reduce_sum
(
per_example_indicator
)
per_example_indicator
,
name
=
'num_nonzero_weight_examples'
)
batch_losses
=
-
log_prob
*
weights
batch_losses
=
-
log_prob
*
weights
losses_dim
=
len
(
batch_losses
.
shape
)
losses_
n
dim
s
=
batch_losses
.
shape
.
ndims
per_example_loss_sum
=
tf
.
reduce_sum
(
per_example_loss_sum
=
tf
.
reduce_sum
(
batch_losses
,
axis
=
range
(
1
,
losses_dim
))
batch_losses
,
axis
=
list
(
range
(
1
,
losses_
n
dim
s
)
))
per_example_loss
=
tf
.
where
(
per_example_weight
>
0
,
per_example_loss
=
tf
.
where
(
per_example_weight
>
0
,
per_example_loss_sum
/
per_example_weight
,
per_example_loss_sum
/
per_example_weight
,
tf
.
zeros_like
(
per_example_weight
))
tf
.
zeros_like
(
per_example_weight
))
total_loss
=
tf
.
reduce_sum
(
per_example_loss
)
/
num_examples
total_loss
=
tf
.
reduce_sum
(
per_example_loss
)
/
num_examples
self
.
autoregressive_target
=
autoregressive_target
self
.
batch_losses
=
batch_losses
self
.
batch_losses
=
batch_losses
self
.
per_example_loss
=
per_example_loss
self
.
per_example_loss
=
per_example_loss
self
.
num_nonzero_weight_examples
=
num_examples
self
.
total_loss
=
total_loss
self
.
total_loss
=
total_loss
def
build
(
self
):
def
build
(
self
):
...
...
research/astronet/astrowavenet/astrowavenet_test.py
→
research/astronet/astrowavenet/astrowavenet_
model_
test.py
View file @
763663de
This diff is collapsed.
Click to expand it.
research/astronet/astrowavenet/data/BUILD
View file @
763663de
...
@@ -2,6 +2,48 @@ package(default_visibility = ["//visibility:public"])
...
@@ -2,6 +2,48 @@ package(default_visibility = ["//visibility:public"])
licenses
([
"notice"
])
# Apache 2.0
licenses
([
"notice"
])
# Apache 2.0
py_library
(
name
=
"base"
,
srcs
=
[
"base.py"
,
],
deps
=
[
"//astronet/ops:dataset_ops"
,
"//astronet/util:configdict"
,
],
)
py_test
(
name
=
"base_test"
,
srcs
=
[
"base_test.py"
],
data
=
[
"test_data/test-dataset.tfrecord"
],
srcs_version
=
"PY2AND3"
,
deps
=
[
":base"
],
)
py_library
(
name
=
"kepler_light_curves"
,
srcs
=
[
"kepler_light_curves.py"
,
],
deps
=
[
":base"
,
"//astronet/util:configdict"
,
],
)
py_library
(
name
=
"synthetic_transits"
,
srcs
=
[
"synthetic_transits.py"
,
],
deps
=
[
":base"
,
":synthetic_transit_maker"
,
"//astronet/util:configdict"
,
],
)
py_library
(
py_library
(
name
=
"synthetic_transit_maker"
,
name
=
"synthetic_transit_maker"
,
srcs
=
[
srcs
=
[
...
...
research/astronet/astrowavenet/data/__init__.py
0 → 100644
View file @
763663de
# Copyright 2018 The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
research/astronet/astrowavenet/data/base.py
0 → 100644
View file @
763663de
# Copyright 2018 The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Base dataset builder classes for AstroWaveNet input pipelines."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
abc
import
six
import
tensorflow
as
tf
from
astronet.util
import
configdict
from
astronet.ops
import
dataset_ops
@
six
.
add_metaclass
(
abc
.
ABCMeta
)
class
DatasetBuilder
(
object
):
"""Base class for building a dataset input pipeline for AstroWaveNet."""
def
__init__
(
self
,
config_overrides
=
None
):
"""Initializes the dataset builder.
Args:
config_overrides: Dict or ConfigDict containing overrides to the default
configuration.
"""
self
.
config
=
configdict
.
ConfigDict
(
self
.
default_config
())
if
config_overrides
is
not
None
:
self
.
config
.
update
(
config_overrides
)
@
staticmethod
def
default_config
():
"""Returns the default configuration as a ConfigDict or Python dict."""
return
{}
@
abc
.
abstractmethod
def
build
(
self
,
batch_size
):
"""Builds the dataset input pipeline.
Args:
batch_size: The number of input examples in each batch.
Returns:
A tf.data.Dataset object.
"""
raise
NotImplementedError
@
six
.
add_metaclass
(
abc
.
ABCMeta
)
class
_ShardedDatasetBuilder
(
DatasetBuilder
):
"""Abstract base class for a dataset consisting of sharded files."""
def
__init__
(
self
,
file_pattern
,
mode
,
config_overrides
=
None
,
use_tpu
=
False
):
"""Initializes the dataset builder.
Args:
file_pattern: File pattern matching input file shards, e.g.
"/tmp/train-?????-of-00100". May also be a comma-separated list of file
patterns.
mode: A tf.estimator.ModeKeys.
config_overrides: Dict or ConfigDict containing overrides to the default
configuration.
use_tpu: Whether to build the dataset for TPU.
"""
super
(
_ShardedDatasetBuilder
,
self
).
__init__
(
config_overrides
)
self
.
file_pattern
=
file_pattern
self
.
mode
=
mode
self
.
use_tpu
=
use_tpu
@
staticmethod
def
default_config
():
config
=
super
(
_ShardedDatasetBuilder
,
_ShardedDatasetBuilder
).
default_config
()
config
.
update
({
"max_length"
:
1024
,
"shuffle_values_buffer"
:
1000
,
"num_parallel_parser_calls"
:
4
,
"batches_buffer_size"
:
None
,
# Defaults to max(1, 256 / batch_size).
})
return
config
@
abc
.
abstractmethod
def
file_reader
(
self
):
"""Returns a function that reads a single sharded file."""
raise
NotImplementedError
@
abc
.
abstractmethod
def
create_example_parser
(
self
):
"""Returns a function that parses a single tf.Example proto."""
raise
NotImplementedError
def
_batch_and_pad
(
self
,
dataset
,
batch_size
):
"""Combines elements into batches of the same length, padding if needed."""
if
self
.
use_tpu
:
padded_length
=
self
.
config
.
max_length
if
not
padded_length
:
raise
ValueError
(
"config.max_length is required when using TPU"
)
# Pad with zeros up to padded_length. Note that this will pad the
# "weights" Tensor with zeros as well, which ensures that padded elements
# do not contribute to the loss.
padded_shapes
=
{}
for
name
,
shape
in
dataset
.
output_shapes
.
iteritems
():
shape
.
assert_is_compatible_with
([
None
,
None
])
# Expect a 2D sequence.
dims
=
shape
.
as_list
()
dims
[
0
]
=
padded_length
shape
=
tf
.
TensorShape
(
dims
)
shape
.
assert_is_fully_defined
()
padded_shapes
[
name
]
=
shape
else
:
# Pad each batch up to the maximum size of each dimension in the batch.
padded_shapes
=
dataset
.
output_shapes
return
dataset
.
padded_batch
(
batch_size
,
padded_shapes
)
def
build
(
self
,
batch_size
):
"""Builds the dataset input pipeline.
Args:
batch_size:
Returns:
A tf.data.Dataset.
Raises:
ValueError: If no files match self.file_pattern.
"""
file_patterns
=
self
.
file_pattern
.
split
(
","
)
filenames
=
[]
for
p
in
file_patterns
:
matches
=
tf
.
gfile
.
Glob
(
p
)
if
not
matches
:
raise
ValueError
(
"Found no input files matching {}"
.
format
(
p
))
filenames
.
extend
(
matches
)
tf
.
logging
.
info
(
"Building input pipeline from %d files matching patterns: %s"
,
len
(
filenames
),
file_patterns
)
is_training
=
self
.
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
# Create a string dataset of filenames, and possibly shuffle.
filename_dataset
=
tf
.
data
.
Dataset
.
from_tensor_slices
(
filenames
)
if
is_training
and
len
(
filenames
)
>
1
:
filename_dataset
=
filename_dataset
.
shuffle
(
len
(
filenames
))
# Read serialized Example protos.
dataset
=
filename_dataset
.
apply
(
tf
.
contrib
.
data
.
parallel_interleave
(
self
.
file_reader
(),
cycle_length
=
8
,
block_length
=
8
,
sloppy
=
True
))
if
is_training
:
# Shuffle and repeat. Note that shuffle() is before repeat(), so elements
# are shuffled among each epoch of data, and not between epochs of data.
if
self
.
config
.
shuffle_values_buffer
>
0
:
dataset
=
dataset
.
shuffle
(
self
.
config
.
shuffle_values_buffer
)
dataset
=
dataset
.
repeat
()
# Map the parser over the dataset.
dataset
=
dataset
.
map
(
self
.
create_example_parser
(),
num_parallel_calls
=
self
.
config
.
num_parallel_parser_calls
)
def
_prepare_wavenet_inputs
(
features
):
"""Validates features, and clips lengths and adds weights if needed."""
# Validate feature names.
required_features
=
{
"autoregressive_input"
,
"conditioning_stack"
}
allowed_features
=
required_features
|
{
"weights"
}
feature_names
=
features
.
keys
()
if
not
required_features
.
issubset
(
feature_names
):
raise
ValueError
(
"Features must contain all of: {}. Got: {}"
.
format
(
required_features
,
feature_names
))
if
not
allowed_features
.
issuperset
(
feature_names
):
raise
ValueError
(
"Features can only contain: {}. Got: {}"
.
format
(
allowed_features
,
feature_names
))
output
=
{}
for
name
,
value
in
features
.
items
():
# Validate shapes. The output dimension is [num_samples, dim].
ndims
=
len
(
value
.
shape
)
if
ndims
==
1
:
# Add an extra dimension: [num_samples] -> [num_samples, 1].
value
=
tf
.
expand_dims
(
value
,
-
1
)
elif
ndims
!=
2
:
raise
ValueError
(
"Features should be 1D or 2D sequences. Got '{}' = {}"
.
format
(
name
,
value
))
if
self
.
config
.
max_length
:
value
=
value
[:
self
.
config
.
max_length
]
output
[
name
]
=
value
if
"weights"
not
in
output
:
output
[
"weights"
]
=
tf
.
ones_like
(
output
[
"autoregressive_input"
])
return
output
dataset
=
dataset
.
map
(
_prepare_wavenet_inputs
)
# Batch results by up to batch_size.
dataset
=
self
.
_batch_and_pad
(
dataset
,
batch_size
)
if
is_training
:
# The dataset repeats infinitely before batching, so each batch has the
# maximum number of elements.
dataset
=
dataset_ops
.
set_batch_size
(
dataset
,
batch_size
)
elif
self
.
use_tpu
and
self
.
mode
==
tf
.
estimator
.
ModeKeys
.
EVAL
:
# Pad to ensure that each batch has the same number of elements.
dataset
=
dataset_ops
.
pad_dataset_to_batch_size
(
dataset
,
batch_size
)
# Prefetch batches.
buffer_size
=
(
self
.
config
.
batches_buffer_size
or
max
(
1
,
int
(
256
/
batch_size
)))
dataset
=
dataset
.
prefetch
(
buffer_size
)
return
dataset
def
tfrecord_reader
(
filename
):
"""Returns a tf.data.Dataset that reads a single TFRecord file shard."""
return
tf
.
data
.
TFRecordDataset
(
filename
,
buffer_size
=
16
*
1000
*
1000
)
class
TFRecordDataset
(
_ShardedDatasetBuilder
):
"""Builder for a dataset consisting of TFRecord files."""
def
file_reader
(
self
):
"""Returns a function that reads a single file shard."""
return
tfrecord_reader
research/astronet/astrowavenet/data/base_test.py
0 → 100644
View file @
763663de
This diff is collapsed.
Click to expand it.
research/astronet/astrowavenet/data/kepler_light_curves.py
0 → 100644
View file @
763663de
# Copyright 2018 The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Kepler light curve inputs to the AstroWaveNet model."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
tensorflow
as
tf
from
astrowavenet.data
import
base
COND_INPUT_KEY
=
"mask"
AR_INPUT_KEY
=
"flux"
class
KeplerLightCurves
(
base
.
TFRecordDataset
):
"""Kepler light curve inputs to the AstroWaveNet model."""
def
create_example_parser
(
self
):
def
_example_parser
(
serialized
):
"""Parses a single tf.Example proto."""
features
=
tf
.
parse_single_example
(
serialized
,
features
=
{
AR_INPUT_KEY
:
tf
.
VarLenFeature
(
tf
.
float32
),
COND_INPUT_KEY
:
tf
.
VarLenFeature
(
tf
.
int64
),
})
# Extract values from SparseTensor objects.
autoregressive_input
=
features
[
AR_INPUT_KEY
].
values
conditioning_stack
=
tf
.
to_float
(
features
[
COND_INPUT_KEY
].
values
)
return
{
"autoregressive_input"
:
autoregressive_input
,
"conditioning_stack"
:
conditioning_stack
,
}
return
_example_parser
research/astronet/astrowavenet/data/synthetic_transit_maker.py
View file @
763663de
...
@@ -43,8 +43,8 @@ class SyntheticTransitMaker(object):
...
@@ -43,8 +43,8 @@ class SyntheticTransitMaker(object):
would translate the sine wave by half of the period. The most common
would translate the sine wave by half of the period. The most common
reason to override this would be to generate light curves
reason to override this would be to generate light curves
deterministically (with e.g. (0,0)).
deterministically (with e.g. (0,0)).
noise_sd_range: A tuple of values in [0, 1) specifying the range of
noise_sd_range: A tuple of values in [0, 1) specifying the range of
standard
standard
deviations for the Gaussian noise applied to the sine wave.
deviations for the Gaussian noise applied to the sine wave.
"""
"""
def
__init__
(
self
,
def
__init__
(
self
,
...
@@ -125,7 +125,7 @@ class SyntheticTransitMaker(object):
...
@@ -125,7 +125,7 @@ class SyntheticTransitMaker(object):
Args:
Args:
time: An np.array of x-values to sample from the thresholded sine wave.
time: An np.array of x-values to sample from the thresholded sine wave.
mask_prob: Value in [0,1], probability an individual datapoint is set to
mask_prob: Value in [0,1], probability an individual datapoint is set to
zero.
zero.
Returns:
Returns:
A generator yielding random light curves.
A generator yielding random light curves.
...
...
research/astronet/astrowavenet/data/synthetic_transit_maker_test.py
View file @
763663de
...
@@ -29,30 +29,30 @@ class SyntheticTransitMakerTest(absltest.TestCase):
...
@@ -29,30 +29,30 @@ class SyntheticTransitMakerTest(absltest.TestCase):
def
testBadRangesRaiseExceptions
(
self
):
def
testBadRangesRaiseExceptions
(
self
):
# Period range cannot contain negative values.
# Period range cannot contain negative values.
with
self
.
assertRaisesRegexp
(
ValueError
,
'
Period
'
):
with
self
.
assertRaisesRegexp
(
ValueError
,
"
Period
"
):
synthetic_transit_maker
.
SyntheticTransitMaker
(
period_range
=
(
-
1
,
10
))
synthetic_transit_maker
.
SyntheticTransitMaker
(
period_range
=
(
-
1
,
10
))
# Amplitude range cannot contain negative values.
# Amplitude range cannot contain negative values.
with
self
.
assertRaisesRegexp
(
ValueError
,
'
Amplitude
'
):
with
self
.
assertRaisesRegexp
(
ValueError
,
"
Amplitude
"
):
synthetic_transit_maker
.
SyntheticTransitMaker
(
amplitude_range
=
(
-
10
,
-
1
))
synthetic_transit_maker
.
SyntheticTransitMaker
(
amplitude_range
=
(
-
10
,
-
1
))
# Threshold ratio range must be contained in the half-open interval [0, 1).
# Threshold ratio range must be contained in the half-open interval [0, 1).
with
self
.
assertRaisesRegexp
(
ValueError
,
'
Threshold ratio
'
):
with
self
.
assertRaisesRegexp
(
ValueError
,
"
Threshold ratio
"
):
synthetic_transit_maker
.
SyntheticTransitMaker
(
synthetic_transit_maker
.
SyntheticTransitMaker
(
threshold_ratio_range
=
(
0
,
1
))
threshold_ratio_range
=
(
0
,
1
))
# Noise standard deviation range must only contain nonnegative values.
# Noise standard deviation range must only contain nonnegative values.
with
self
.
assertRaisesRegexp
(
ValueError
,
'
Noise standard deviation
'
):
with
self
.
assertRaisesRegexp
(
ValueError
,
"
Noise standard deviation
"
):
synthetic_transit_maker
.
SyntheticTransitMaker
(
noise_sd_range
=
(
-
1
,
1
))
synthetic_transit_maker
.
SyntheticTransitMaker
(
noise_sd_range
=
(
-
1
,
1
))
# End of range may not be less than start.
# End of range may not be less than start.
invalid_range
=
(
0.2
,
0.1
)
invalid_range
=
(
0.2
,
0.1
)
range_args
=
[
range_args
=
[
'
period_range
'
,
'
threshold_ratio_range
'
,
'
amplitude_range
'
,
"
period_range
"
,
"
threshold_ratio_range
"
,
"
amplitude_range
"
,
'
noise_sd_range
'
,
'
phase_range
'
"
noise_sd_range
"
,
"
phase_range
"
]
]
for
range_arg
in
range_args
:
for
range_arg
in
range_args
:
with
self
.
assertRaisesRegexp
(
ValueError
,
'
may not be less
'
):
with
self
.
assertRaisesRegexp
(
ValueError
,
"
may not be less
"
):
synthetic_transit_maker
.
SyntheticTransitMaker
(
synthetic_transit_maker
.
SyntheticTransitMaker
(
**
{
range_arg
:
invalid_range
})
**
{
range_arg
:
invalid_range
})
...
@@ -106,5 +106,5 @@ class SyntheticTransitMakerTest(absltest.TestCase):
...
@@ -106,5 +106,5 @@ class SyntheticTransitMakerTest(absltest.TestCase):
self
.
assertEqual
(
len
(
mask
),
100
)
self
.
assertEqual
(
len
(
mask
),
100
)
if
__name__
==
'
__main__
'
:
if
__name__
==
"
__main__
"
:
absltest
.
main
()
absltest
.
main
()
research/astronet/astrowavenet/data/synthetic_transits.py
0 → 100644
View file @
763663de
# Copyright 2018 The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Synthetic transit inputs to the AstroWaveNet model."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
import
tensorflow
as
tf
from
astronet.util
import
configdict
from
astrowavenet.data
import
base
from
astrowavenet.data
import
synthetic_transit_maker
def
_prepare_wavenet_inputs
(
light_curve
,
mask
):
"""Gathers synthetic transits into the format expected by AstroWaveNet."""
return
{
"autoregressive_input"
:
tf
.
expand_dims
(
light_curve
,
-
1
),
"conditioning_stack"
:
tf
.
expand_dims
(
mask
,
-
1
),
}
class
SyntheticTransits
(
base
.
DatasetBuilder
):
"""Synthetic transit inputs to the AstroWaveNet model."""
@
staticmethod
def
default_config
():
return
configdict
.
ConfigDict
({
"period_range"
:
(
0.5
,
4
),
"amplitude_range"
:
(
1
,
1
),
"threshold_ratio_range"
:
(
0
,
0.99
),
"phase_range"
:
(
0
,
1
),
"noise_sd_range"
:
(
0.1
,
0.1
),
"mask_probability"
:
0.1
,
"light_curve_time_range"
:
(
0
,
100
),
"light_curve_num_points"
:
1000
})
def
build
(
self
,
batch_size
):
transit_maker
=
synthetic_transit_maker
.
SyntheticTransitMaker
(
period_range
=
self
.
config
.
period_range
,
amplitude_range
=
self
.
config
.
amplitude_range
,
threshold_ratio_range
=
self
.
config
.
threshold_ratio_range
,
phase_range
=
self
.
config
.
phase_range
,
noise_sd_range
=
self
.
config
.
noise_sd_range
)
t_start
,
t_end
=
self
.
config
.
light_curve_time_range
time
=
np
.
linspace
(
t_start
,
t_end
,
self
.
config
.
light_curve_num_points
)
dataset
=
tf
.
data
.
Dataset
.
from_generator
(
transit_maker
.
random_light_curve_generator
(
time
,
mask_prob
=
self
.
config
.
mask_probability
),
output_types
=
(
tf
.
float32
,
tf
.
float32
),
output_shapes
=
(
tf
.
TensorShape
((
self
.
config
.
light_curve_num_points
,)),
tf
.
TensorShape
((
self
.
config
.
light_curve_num_points
,))))
dataset
=
dataset
.
map
(
_prepare_wavenet_inputs
)
dataset
=
dataset
.
batch
(
batch_size
,
drop_remainder
=
True
)
dataset
=
dataset
.
prefetch
(
-
1
)
return
dataset
research/astronet/astrowavenet/data/test_data/test-dataset.tfrecord
0 → 100644
View file @
763663de
File added
research/astronet/astrowavenet/trainer.py
0 → 100644
View file @
763663de
# Copyright 2018 The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Script for training and evaluating AstroWaveNet models."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
json
import
os.path
from
absl
import
flags
import
tensorflow
as
tf
from
astronet.util
import
config_util
from
astronet.util
import
configdict
from
astronet.util
import
estimator_runner
from
astrowavenet
import
astrowavenet_model
from
astrowavenet
import
configurations
from
astrowavenet.data
import
kepler_light_curves
from
astrowavenet.data
import
synthetic_transits
from
astrowavenet.util
import
estimator_util
FLAGS
=
flags
.
FLAGS
flags
.
DEFINE_enum
(
"dataset"
,
None
,
[
"synthetic_transits"
,
"kepler_light_curves"
],
"Dataset for training and/or evaluation."
)
flags
.
DEFINE_string
(
"model_dir"
,
None
,
"Base output directory."
)
flags
.
DEFINE_string
(
"train_files"
,
None
,
"Comma-separated list of file patterns matching the TFRecord files in the "
"training dataset."
)
flags
.
DEFINE_string
(
"eval_files"
,
None
,
"Comma-separated list of file patterns matching the TFRecord files in the "
"evaluation dataset."
)
flags
.
DEFINE_string
(
"config_name"
,
"base"
,
"Name of the AstroWaveNet configuration."
)
flags
.
DEFINE_string
(
"config_overrides"
,
"{}"
,
"JSON string or JSON file containing overrides to the base configuration."
)
flags
.
DEFINE_enum
(
"schedule"
,
None
,
[
"train"
,
"train_and_eval"
,
"continuous_eval"
],
"Schedule for running the model."
)
flags
.
DEFINE_string
(
"eval_name"
,
"val"
,
"Name of the evaluation task."
)
flags
.
DEFINE_integer
(
"train_steps"
,
None
,
"Total number of steps for training."
)
flags
.
DEFINE_integer
(
"eval_steps"
,
None
,
"Number of steps for each evaluation."
)
flags
.
DEFINE_integer
(
"local_eval_frequency"
,
1000
,
"The number of training steps in between evaluation runs. Only applies "
"when schedule == 'train_and_eval'."
)
flags
.
DEFINE_integer
(
"save_summary_steps"
,
None
,
"The frequency at which to save model summaries."
)
flags
.
DEFINE_integer
(
"save_checkpoints_steps"
,
None
,
"The frequency at which to save model checkpoints."
)
flags
.
DEFINE_integer
(
"save_checkpoints_secs"
,
None
,
"The frequency at which to save model checkpoints."
)
flags
.
DEFINE_integer
(
"keep_checkpoint_max"
,
1
,
"The maximum number of model checkpoints to keep."
)
# ------------------------------------------------------------------------------
# TPU-only flags
# ------------------------------------------------------------------------------
flags
.
DEFINE_boolean
(
"use_tpu"
,
False
,
"Whether to execute on TPU."
)
flags
.
DEFINE_string
(
"master"
,
None
,
"Address of the TensorFlow TPU master."
)
flags
.
DEFINE_integer
(
"tpu_num_shards"
,
8
,
"Number of TPU shards."
)
flags
.
DEFINE_integer
(
"tpu_iterations_per_loop"
,
1000
,
"Number of iterations per TPU training loop."
)
flags
.
DEFINE_integer
(
"eval_batch_size"
,
None
,
"Batch size for TPU evaluation. Defaults to the training batch size."
)
def
_create_run_config
():
"""Creates a TPU RunConfig if FLAGS.use_tpu is True, else a RunConfig."""
session_config
=
tf
.
ConfigProto
(
allow_soft_placement
=
True
)
run_config_kwargs
=
{
"save_summary_steps"
:
FLAGS
.
save_summary_steps
,
"save_checkpoints_steps"
:
FLAGS
.
save_checkpoints_steps
,
"save_checkpoints_secs"
:
FLAGS
.
save_checkpoints_secs
,
"session_config"
:
session_config
,
"keep_checkpoint_max"
:
FLAGS
.
keep_checkpoint_max
}
if
FLAGS
.
use_tpu
:
if
not
FLAGS
.
master
:
raise
ValueError
(
"FLAGS.master must be set for TPUEstimator."
)
tpu_config
=
tf
.
contrib
.
tpu
.
TPUConfig
(
iterations_per_loop
=
FLAGS
.
tpu_iterations_per_loop
,
num_shards
=
FLAGS
.
tpu_num_shards
,
per_host_input_for_training
=
(
FLAGS
.
tpu_num_shards
<=
8
))
run_config
=
tf
.
contrib
.
tpu
.
RunConfig
(
tpu_config
=
tpu_config
,
master
=
FLAGS
.
master
,
**
run_config_kwargs
)
else
:
if
FLAGS
.
master
:
raise
ValueError
(
"FLAGS.master should only be set for TPUEstimator."
)
run_config
=
tf
.
estimator
.
RunConfig
(
**
run_config_kwargs
)
return
run_config
def
_get_file_pattern
(
mode
):
"""Gets the value of the file pattern flag for the specified mode."""
flag_name
=
(
"train_files"
if
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
else
"eval_files"
)
file_pattern
=
FLAGS
[
flag_name
].
value
if
file_pattern
is
None
:
raise
ValueError
(
"--{} is required for mode '{}'"
.
format
(
flag_name
,
mode
))
return
file_pattern
def
_create_dataset_builder
(
mode
,
config_overrides
=
None
):
"""Creates a dataset builder for the input pipeline."""
if
FLAGS
.
dataset
==
"synthetic_transits"
:
return
synthetic_transits
.
SyntheticTransits
(
config_overrides
)
file_pattern
=
_get_file_pattern
(
mode
)
if
FLAGS
.
dataset
==
"kepler_light_curves"
:
builder_class
=
kepler_light_curves
.
KeplerLightCurves
else
:
raise
ValueError
(
"Unsupported dataset: {}"
.
format
(
FLAGS
.
dataset
))
return
builder_class
(
file_pattern
,
mode
,
config_overrides
=
config_overrides
,
use_tpu
=
FLAGS
.
use_tpu
)
def
_create_input_fn
(
mode
,
config_overrides
=
None
):
"""Creates an Estimator input_fn."""
builder
=
_create_dataset_builder
(
mode
,
config_overrides
)
tf
.
logging
.
info
(
"Dataset config for mode '%s': %s"
,
mode
,
config_util
.
to_json
(
builder
.
config
))
return
estimator_util
.
create_input_fn
(
builder
)
def
_create_eval_args
(
config_overrides
=
None
):
"""Builds eval_args for estimator_runner.evaluate()."""
if
FLAGS
.
dataset
==
"synthetic_transits"
and
not
FLAGS
.
eval_steps
:
raise
ValueError
(
"Dataset '{}' requires --eval_steps for evaluation"
.
format
(
FLAGS
.
dataset
))
input_fn
=
_create_input_fn
(
tf
.
estimator
.
ModeKeys
.
EVAL
,
config_overrides
)
return
{
FLAGS
.
eval_name
:
(
input_fn
,
FLAGS
.
eval_steps
)}
def
main
(
argv
):
del
argv
# Unused.
config
=
configdict
.
ConfigDict
(
configurations
.
get_config
(
FLAGS
.
config_name
))
config_overrides
=
json
.
loads
(
FLAGS
.
config_overrides
)
for
key
in
config_overrides
:
if
key
not
in
[
"dataset"
,
"hparams"
]:
raise
ValueError
(
"Unrecognized config override: {}"
.
format
(
key
))
config
.
hparams
.
update
(
config_overrides
.
get
(
"hparams"
,
{}))
# Log configs.
configs_json
=
[
(
"config_overrides"
,
config_util
.
to_json
(
config_overrides
)),
(
"config"
,
config_util
.
to_json
(
config
)),
]
for
config_name
,
config_json
in
configs_json
:
tf
.
logging
.
info
(
"%s: %s"
,
config_name
,
config_json
)
# Create the estimator.
run_config
=
_create_run_config
()
estimator
=
estimator_util
.
create_estimator
(
astrowavenet_model
.
AstroWaveNet
,
config
.
hparams
,
run_config
,
FLAGS
.
model_dir
,
FLAGS
.
eval_batch_size
)
if
FLAGS
.
schedule
in
[
"train"
,
"train_and_eval"
]:
# Save configs.
tf
.
gfile
.
MakeDirs
(
FLAGS
.
model_dir
)
for
config_name
,
config_json
in
configs_json
:
filename
=
os
.
path
.
join
(
FLAGS
.
model_dir
,
"{}.json"
.
format
(
config_name
))
with
tf
.
gfile
.
Open
(
filename
,
"w"
)
as
f
:
f
.
write
(
config_json
)
train_input_fn
=
_create_input_fn
(
tf
.
estimator
.
ModeKeys
.
TRAIN
,
config_overrides
.
get
(
"dataset"
))
train_hooks
=
[]
if
FLAGS
.
schedule
==
"train"
:
estimator
.
train
(
train_input_fn
,
hooks
=
train_hooks
,
max_steps
=
FLAGS
.
train_steps
)
else
:
assert
FLAGS
.
schedule
==
"train_and_eval"
eval_args
=
_create_eval_args
(
config_overrides
.
get
(
"dataset"
))
for
_
in
estimator_runner
.
continuous_train_and_eval
(
estimator
=
estimator
,
train_input_fn
=
train_input_fn
,
eval_args
=
eval_args
,
local_eval_frequency
=
FLAGS
.
local_eval_frequency
,
train_hooks
=
train_hooks
,
train_steps
=
FLAGS
.
train_steps
):
# continuous_train_and_eval() yields evaluation metrics after each
# FLAGS.local_eval_frequency. It also saves and logs them, so we don't
# do anything here.
pass
else
:
assert
FLAGS
.
schedule
==
"continuous_eval"
eval_args
=
_create_eval_args
(
config_overrides
.
get
(
"dataset"
))
for
_
in
estimator_runner
.
continuous_eval
(
estimator
=
estimator
,
eval_args
=
eval_args
,
train_steps
=
FLAGS
.
train_steps
):
# continuous_train_and_eval() yields evaluation metrics after each
# checkpoint. It also saves and logs them, so we don't do anything here.
pass
if
__name__
==
"__main__"
:
tf
.
logging
.
set_verbosity
(
tf
.
logging
.
INFO
)
flags
.
mark_flags_as_required
([
"dataset"
,
"model_dir"
,
"schedule"
])
def
_validate_schedule
(
flag_values
):
"""Validates the --schedule flag and the flags it interacts with."""
schedule
=
flag_values
[
"schedule"
]
save_checkpoints_steps
=
flag_values
[
"save_checkpoints_steps"
]
save_checkpoints_secs
=
flag_values
[
"save_checkpoints_secs"
]
if
schedule
in
[
"train"
,
"train_and_eval"
]:
if
not
(
save_checkpoints_steps
or
save_checkpoints_secs
):
raise
flags
.
ValidationError
(
"--schedule='%s' requires --save_checkpoints_steps or "
"--save_checkpoints_secs."
%
schedule
)
return
True
flags
.
register_multi_flags_validator
(
[
"schedule"
,
"save_checkpoints_steps"
,
"save_checkpoints_secs"
],
_validate_schedule
)
tf
.
app
.
run
()
research/astronet/astrowavenet/util/BUILD
0 → 100644
View file @
763663de
package
(
default_visibility
=
[
"//visibility:public"
])
licenses
([
"notice"
])
# Apache 2.0
py_library
(
name
=
"estimator_util"
,
srcs
=
[
"estimator_util.py"
],
srcs_version
=
"PY2AND3"
,
deps
=
[
"//astronet/ops:training"
],
)
research/astronet/astrowavenet/util/estimator_util.py
0 → 100644
View file @
763663de
# Copyright 2018 The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Helper functions for creating a TensorFlow Estimator."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
copy
import
tensorflow
as
tf
from
astronet.ops
import
training
class
_InputFn
(
object
):
"""Class that acts as a callable input function for Estimator train / eval."""
def
__init__
(
self
,
dataset_builder
):
"""Initializes the input function.
Args:
dataset_builder: Instance of DatasetBuilder.
"""
self
.
_builder
=
dataset_builder
def
__call__
(
self
,
params
):
"""Builds the input pipeline."""
return
self
.
_builder
.
build
(
batch_size
=
params
[
"batch_size"
])
def
create_input_fn
(
dataset_builder
):
"""Creates an input_fn that that builds an input pipeline.
Args:
dataset_builder: Instance of DatasetBuilder.
Returns:
A callable that builds an input pipeline and returns a tf.data.Dataset
object.
"""
return
_InputFn
(
dataset_builder
)
class
_ModelFn
(
object
):
"""Class that acts as a callable model function for Estimator train / eval."""
def
__init__
(
self
,
model_class
,
hparams
,
use_tpu
=
False
):
"""Initializes the model function.
Args:
model_class: Model class.
hparams: A HParams object containing hyperparameters for building and
training the model.
use_tpu: If True, a TPUEstimator will be returned. Otherwise an Estimator
will be returned.
"""
self
.
_model_class
=
model_class
self
.
_base_hparams
=
hparams
self
.
_use_tpu
=
use_tpu
def
__call__
(
self
,
features
,
mode
,
params
):
"""Builds the model and returns an EstimatorSpec or TPUEstimatorSpec."""
hparams
=
copy
.
deepcopy
(
self
.
_base_hparams
)
if
"batch_size"
in
params
:
hparams
.
batch_size
=
params
[
"batch_size"
]
model
=
self
.
_model_class
(
features
,
hparams
,
mode
)
model
.
build
()
# Possibly create train_op.
use_tpu
=
self
.
_use_tpu
train_op
=
None
if
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
:
learning_rate
=
training
.
create_learning_rate
(
hparams
,
model
.
global_step
)
optimizer
=
training
.
create_optimizer
(
hparams
,
learning_rate
,
use_tpu
)
train_op
=
training
.
create_train_op
(
model
,
optimizer
)
if
use_tpu
:
estimator
=
tf
.
contrib
.
tpu
.
TPUEstimatorSpec
(
mode
=
mode
,
loss
=
model
.
total_loss
,
train_op
=
train_op
)
else
:
estimator
=
tf
.
estimator
.
EstimatorSpec
(
mode
=
mode
,
loss
=
model
.
total_loss
,
train_op
=
train_op
)
return
estimator
def
create_model_fn
(
model_class
,
hparams
,
use_tpu
=
False
):
"""Wraps model_class as an Estimator or TPUEstimator model_fn.
Args:
model_class: AstroModel or a subclass.
hparams: ConfigDict of configuration parameters for building the model.
use_tpu: If True, a TPUEstimator model_fn is returned. Otherwise an
Estimator model_fn is returned.
Returns:
model_fn: A callable that constructs the model and returns a
TPUEstimatorSpec if use_tpu is True, otherwise an EstimatorSpec.
"""
return
_ModelFn
(
model_class
,
hparams
,
use_tpu
)
def
create_estimator
(
model_class
,
hparams
,
run_config
=
None
,
model_dir
=
None
,
eval_batch_size
=
None
):
"""Wraps model_class as an Estimator or TPUEstimator.
If run_config is None or a tf.estimator.RunConfig, an Estimator is returned.
If run_config is a tf.contrib.tpu.RunConfig, a TPUEstimator is returned.
Args:
model_class: AstroWaveNet or a subclass.
hparams: ConfigDict of configuration parameters for building the model.
run_config: Optional tf.estimator.RunConfig or tf.contrib.tpu.RunConfig.
model_dir: Optional directory for saving the model. If not passed
explicitly, it must be specified in run_config.
eval_batch_size: Optional batch size for evaluation on TPU. Only applicable
if run_config is a tf.contrib.tpu.RunConfig. Defaults to
hparams.batch_size.
Returns:
An Estimator object if run_config is None or a tf.estimator.RunConfig, or a
TPUEstimator object if run_config is a tf.contrib.tpu.RunConfig.
Raises:
ValueError:
If model_dir is not passed explicitly or in run_config.model_dir, or if
eval_batch_size is specified and run_config is not a
tf.contrib.tpu.RunConfig.
"""
if
run_config
is
None
:
run_config
=
tf
.
estimator
.
RunConfig
()
else
:
run_config
=
copy
.
deepcopy
(
run_config
)
if
not
model_dir
and
not
run_config
.
model_dir
:
raise
ValueError
(
"model_dir must be passed explicitly or specified in run_config"
)
use_tpu
=
isinstance
(
run_config
,
tf
.
contrib
.
tpu
.
RunConfig
)
model_fn
=
create_model_fn
(
model_class
,
hparams
,
use_tpu
)
if
use_tpu
:
eval_batch_size
=
eval_batch_size
or
hparams
.
batch_size
estimator
=
tf
.
contrib
.
tpu
.
TPUEstimator
(
model_fn
=
model_fn
,
model_dir
=
model_dir
,
config
=
run_config
,
train_batch_size
=
hparams
.
batch_size
,
eval_batch_size
=
eval_batch_size
)
else
:
if
eval_batch_size
is
not
None
:
raise
ValueError
(
"eval_batch_size can only be specified for TPU."
)
estimator
=
tf
.
estimator
.
Estimator
(
model_fn
=
model_fn
,
model_dir
=
model_dir
,
config
=
run_config
,
params
=
{
"batch_size"
:
hparams
.
batch_size
})
return
estimator
research/astronet/light_curve_util/util.py
View file @
763663de
...
@@ -220,14 +220,13 @@ def reshard_arrays(xs, ys):
...
@@ -220,14 +220,13 @@ def reshard_arrays(xs, ys):
return
np
.
split
(
concat_x
,
boundaries
)
return
np
.
split
(
concat_x
,
boundaries
)
def
uniform_cadence_light_curve
(
all_
cadence_no
,
all_
time
,
all_
flux
):
def
uniform_cadence_light_curve
(
cadence_no
,
time
,
flux
):
"""Combines data into a single light curve with uniform cadence numbers.
"""Combines data into a single light curve with uniform cadence numbers.
Args:
Args:
all_cadence_no: A list of numpy arrays; the cadence numbers of the light
cadence_no: numpy array; the cadence numbers of the light curve.
curve.
time: numpy array; the time values of the light curve.
all_time: A list of numpy arrays; the time values of the light curve.
flux: numpy array; the flux values of the light curve.
all_flux: A list of numpy arrays; the flux values of the light curve.
Returns:
Returns:
cadence_no: numpy array; the cadence numbers of the light curve with no
cadence_no: numpy array; the cadence numbers of the light curve with no
...
@@ -245,24 +244,23 @@ def uniform_cadence_light_curve(all_cadence_no, all_time, all_flux):
...
@@ -245,24 +244,23 @@ def uniform_cadence_light_curve(all_cadence_no, all_time, all_flux):
Raises:
Raises:
ValueError: If there are duplicate cadence numbers in the input.
ValueError: If there are duplicate cadence numbers in the input.
"""
"""
min_cadence_no
=
np
.
min
(
[
np
.
min
(
c
)
for
c
in
all_
cadence_no
]
)
min_cadence_no
=
np
.
min
(
cadence_no
)
max_cadence_no
=
np
.
max
(
[
np
.
max
(
c
)
for
c
in
all_
cadence_no
]
)
max_cadence_no
=
np
.
max
(
cadence_no
)
out_cadence_no
=
np
.
arange
(
out_cadence_no
=
np
.
arange
(
min_cadence_no
,
max_cadence_no
+
1
,
dtype
=
all_
cadence_no
[
0
]
.
dtype
)
min_cadence_no
,
max_cadence_no
+
1
,
dtype
=
cadence_no
.
dtype
)
out_time
=
np
.
zeros_like
(
out_cadence_no
,
dtype
=
all_
time
[
0
]
.
dtype
)
out_time
=
np
.
zeros_like
(
out_cadence_no
,
dtype
=
time
.
dtype
)
out_flux
=
np
.
zeros_like
(
out_cadence_no
,
dtype
=
all_
flux
[
0
]
.
dtype
)
out_flux
=
np
.
zeros_like
(
out_cadence_no
,
dtype
=
flux
.
dtype
)
out_mask
=
np
.
zeros_like
(
out_cadence_no
,
dtype
=
np
.
bool
)
out_mask
=
np
.
zeros_like
(
out_cadence_no
,
dtype
=
np
.
bool
)
for
cadence_no
,
time
,
flux
in
zip
(
all_cadence_no
,
all_time
,
all_flux
):
for
c
,
t
,
f
in
zip
(
cadence_no
,
time
,
flux
):
for
c
,
t
,
f
in
zip
(
cadence_no
,
time
,
flux
):
if
np
.
isfinite
(
c
)
and
np
.
isfinite
(
t
)
and
np
.
isfinite
(
f
):
if
np
.
isfinite
(
c
)
and
np
.
isfinite
(
t
)
and
np
.
isfinite
(
f
):
i
=
int
(
c
-
min_cadence_no
)
i
=
int
(
c
-
min_cadence_no
)
if
out_mask
[
i
]:
if
out_mask
[
i
]:
raise
ValueError
(
"Duplicate cadence number: {}"
.
format
(
c
))
raise
ValueError
(
"Duplicate cadence number: {}"
.
format
(
c
))
out_time
[
i
]
=
t
out_time
[
i
]
=
t
out_flux
[
i
]
=
f
out_flux
[
i
]
=
f
out_mask
[
i
]
=
True
out_mask
[
i
]
=
True
return
out_cadence_no
,
out_time
,
out_flux
,
out_mask
return
out_cadence_no
,
out_time
,
out_flux
,
out_mask
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment