image_classification.py 2.7 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Detection input and model functions for serving/inference."""

import tensorflow as tf

from official.vision.beta.modeling import factory
from official.vision.beta.ops import preprocess_ops
from official.vision.beta.serving import export_base


MEAN_RGB = (0.485 * 255, 0.456 * 255, 0.406 * 255)
STDDEV_RGB = (0.229 * 255, 0.224 * 255, 0.225 * 255)


class ClassificationModule(export_base.ExportModule):
  """classification Module."""

Hongkun Yu's avatar
Hongkun Yu committed
32
  def _build_model(self):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
33
34
35
    input_specs = tf.keras.layers.InputSpec(
        shape=[self._batch_size] + self._input_image_size + [3])

Hongkun Yu's avatar
Hongkun Yu committed
36
    return factory.build_classification_model(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
37
        input_specs=input_specs,
Hongkun Yu's avatar
Hongkun Yu committed
38
39
        model_config=self.params.task.model,
        l2_regularizer=None)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

  def _build_inputs(self, image):
    """Builds classification model inputs for serving."""
    # Center crops and resizes image.
    image = preprocess_ops.center_crop_image(image)

    image = tf.image.resize(
        image, self._input_image_size, method=tf.image.ResizeMethod.BILINEAR)

    image = tf.reshape(
        image, [self._input_image_size[0], self._input_image_size[1], 3])

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image,
                                           offset=MEAN_RGB,
                                           scale=STDDEV_RGB)
    return image

Hongkun Yu's avatar
Hongkun Yu committed
58
  def serve(self, images):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    """Cast image to float and run inference.

    Args:
      images: uint8 Tensor of shape [batch_size, None, None, 3]
    Returns:
      Tensor holding classification output logits.
    """
    with tf.device('cpu:0'):
      images = tf.cast(images, dtype=tf.float32)

      images = tf.nest.map_structure(
          tf.identity,
          tf.map_fn(
              self._build_inputs, elems=images,
              fn_output_signature=tf.TensorSpec(
                  shape=self._input_image_size + [3], dtype=tf.float32),
              parallel_iterations=32
              )
          )

Hongkun Yu's avatar
Hongkun Yu committed
79
    logits = self.inference_step(images)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
80

Abdullah Rashwan's avatar
Abdullah Rashwan committed
81
    return dict(outputs=logits)