detection_test.py 4.85 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
16
"""Test for image detection export lib."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

import io
import os

from absl.testing import parameterized
import numpy as np
from PIL import Image
import tensorflow as tf

from official.common import registry_imports  # pylint: disable=unused-import
from official.core import exp_factory
from official.vision.beta.serving import detection


class DetectionExportTest(tf.test.TestCase, parameterized.TestCase):

  def _get_detection_module(self, experiment_name):
    params = exp_factory.get_exp_config(experiment_name)
    params.task.model.backbone.resnet.model_id = 18
    params.task.model.detection_generator.use_batched_nms = True
    detection_module = detection.DetectionModule(
        params, batch_size=1, input_image_size=[640, 640])
    return detection_module

Hongkun Yu's avatar
Hongkun Yu committed
41
42
43
44
  def _export_from_module(self, module, input_type, save_directory):
    signatures = module.get_inference_signatures(
        {input_type: 'serving_default'})
    tf.saved_model.save(module, save_directory, signatures=signatures)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
45

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
46
  def _get_dummy_input(self, input_type, batch_size, image_size):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
47
    """Get dummy input for the given input type."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
48
    h, w = image_size
Abdullah Rashwan's avatar
Abdullah Rashwan committed
49
50

    if input_type == 'image_tensor':
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
51
      return tf.zeros((batch_size, h, w, 3), dtype=np.uint8)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
52
    elif input_type == 'image_bytes':
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
53
      image = Image.fromarray(np.zeros((h, w, 3), dtype=np.uint8))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
54
55
56
57
      byte_io = io.BytesIO()
      image.save(byte_io, 'PNG')
      return [byte_io.getvalue() for b in range(batch_size)]
    elif input_type == 'tf_example':
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
58
      image_tensor = tf.zeros((h, w, 3), dtype=tf.uint8)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
59
60
61
62
63
64
65
66
67
68
69
      encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).numpy()
      example = tf.train.Example(
          features=tf.train.Features(
              feature={
                  'image/encoded':
                      tf.train.Feature(
                          bytes_list=tf.train.BytesList(value=[encoded_jpeg])),
              })).SerializeToString()
      return [example for b in range(batch_size)]

  @parameterized.parameters(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
70
71
72
73
74
75
76
77
78
79
80
81
      ('image_tensor', 'fasterrcnn_resnetfpn_coco', [384, 384]),
      ('image_bytes', 'fasterrcnn_resnetfpn_coco', [640, 640]),
      ('tf_example', 'fasterrcnn_resnetfpn_coco', [640, 640]),
      ('image_tensor', 'maskrcnn_resnetfpn_coco', [640, 640]),
      ('image_bytes', 'maskrcnn_resnetfpn_coco', [640, 384]),
      ('tf_example', 'maskrcnn_resnetfpn_coco', [640, 640]),
      ('image_tensor', 'retinanet_resnetfpn_coco', [640, 640]),
      ('image_bytes', 'retinanet_resnetfpn_coco', [640, 640]),
      ('tf_example', 'retinanet_resnetfpn_coco', [384, 640]),
      ('image_tensor', 'retinanet_resnetfpn_coco', [384, 384]),
      ('image_bytes', 'retinanet_spinenet_coco', [640, 640]),
      ('tf_example', 'retinanet_spinenet_coco', [640, 384]),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
82
  )
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
83
  def test_export(self, input_type, experiment_name, image_size):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
84
85
86
    tmp_dir = self.get_temp_dir()
    module = self._get_detection_module(experiment_name)

Hongkun Yu's avatar
Hongkun Yu committed
87
    self._export_from_module(module, input_type, tmp_dir)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
88
89

    self.assertTrue(os.path.exists(os.path.join(tmp_dir, 'saved_model.pb')))
Hongkun Yu's avatar
Hongkun Yu committed
90
91
92
93
94
95
    self.assertTrue(
        os.path.exists(os.path.join(tmp_dir, 'variables', 'variables.index')))
    self.assertTrue(
        os.path.exists(
            os.path.join(tmp_dir, 'variables',
                         'variables.data-00000-of-00001')))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
96
97

    imported = tf.saved_model.load(tmp_dir)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
98
    detection_fn = imported.signatures['serving_default']
Abdullah Rashwan's avatar
Abdullah Rashwan committed
99

Hongkun Yu's avatar
Hongkun Yu committed
100
101
    images = self._get_dummy_input(
        input_type, batch_size=1, image_size=image_size)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
102

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
103
    processed_images, anchor_boxes, image_info = module._build_inputs(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
104
        tf.zeros((224, 224, 3), dtype=tf.uint8))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
105
    image_shape = image_info[1, :]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
106
    image_shape = tf.expand_dims(image_shape, 0)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
107
    processed_images = tf.expand_dims(processed_images, 0)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
108
109
110
    for l, l_boxes in anchor_boxes.items():
      anchor_boxes[l] = tf.expand_dims(l_boxes, 0)

Hongkun Yu's avatar
Hongkun Yu committed
111
    expected_outputs = module.model(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
112
113
114
115
        images=processed_images,
        image_shape=image_shape,
        anchor_boxes=anchor_boxes,
        training=False)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
116
    outputs = detection_fn(tf.constant(images))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
117
118
119
120

    self.assertAllClose(outputs['num_detections'].numpy(),
                        expected_outputs['num_detections'].numpy())

Hongkun Yu's avatar
Hongkun Yu committed
121

Abdullah Rashwan's avatar
Abdullah Rashwan committed
122
123
if __name__ == '__main__':
  tf.test.main()