model_lib.py 44.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
r"""Constructs model, inputs, and training environment."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import copy
22
import functools
23
import os
24

25
import tensorflow.compat.v1 as tf
26
import tensorflow.compat.v2 as tf2
27
28
import tf_slim as slim

29
from object_detection import eval_util
30
from object_detection import exporter as exporter_lib
31
from object_detection import inputs
32
from object_detection.builders import graph_rewriter_builder
33
34
35
36
37
from object_detection.builders import model_builder
from object_detection.builders import optimizer_builder
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util
from object_detection.utils import label_map_util
38
from object_detection.utils import ops
39
40
41
42
from object_detection.utils import shape_utils
from object_detection.utils import variables_helper
from object_detection.utils import visualization_utils as vis_utils

43
44
45
46
47
48
49
50
# pylint: disable=g-import-not-at-top
try:
  from tensorflow.contrib import learn as contrib_learn
except ImportError:
  # TF 2.0 doesn't ship with contrib.
  pass
# pylint: enable=g-import-not-at-top

51
52
53
54
55
56
57
58
# A map of names to methods that help build the model.
MODEL_BUILD_UTIL_MAP = {
    'get_configs_from_pipeline_file':
        config_util.get_configs_from_pipeline_file,
    'create_pipeline_proto_from_configs':
        config_util.create_pipeline_proto_from_configs,
    'merge_external_params_with_configs':
        config_util.merge_external_params_with_configs,
59
60
61
62
63
64
    'create_train_input_fn':
        inputs.create_train_input_fn,
    'create_eval_input_fn':
        inputs.create_eval_input_fn,
    'create_predict_input_fn':
        inputs.create_predict_input_fn,
65
    'detection_model_fn_base': model_builder.build,
66
67
68
}


69
70
def _prepare_groundtruth_for_eval(detection_model, class_agnostic,
                                  max_number_of_boxes):
71
  """Extracts groundtruth data from detection_model and prepares it for eval.
72
73
74
75

  Args:
    detection_model: A `DetectionModel` object.
    class_agnostic: Whether the detections are class_agnostic.
76
    max_number_of_boxes: Max number of groundtruth boxes.
77
78
79
80

  Returns:
    A tuple of:
    groundtruth: Dictionary with the following fields:
81
82
83
84
85
      'groundtruth_boxes': [batch_size, num_boxes, 4] float32 tensor of boxes,
        in normalized coordinates.
      'groundtruth_classes': [batch_size, num_boxes] int64 tensor of 1-indexed
        classes.
      'groundtruth_masks': 4D float32 tensor of instance masks (if provided in
86
        groundtruth)
87
88
      'groundtruth_is_crowd': [batch_size, num_boxes] bool tensor indicating
        is_crowd annotations (if provided in groundtruth).
89
90
91
      'groundtruth_area': [batch_size, num_boxes] float32 tensor indicating
        the area (in the original absolute coordinates) of annotations (if
        provided in groundtruth).
92
93
      'num_groundtruth_boxes': [batch_size] tensor containing the maximum number
        of groundtruth boxes per image..
94
95
      'groundtruth_keypoints': [batch_size, num_boxes, num_keypoints, 2] float32
        tensor of keypoints (if provided in groundtruth).
96
97
98
99
100
101
102
103
104
      'groundtruth_dp_num_points_list': [batch_size, num_boxes] int32 tensor
        with the number of DensePose points for each instance (if provided in
        groundtruth).
      'groundtruth_dp_part_ids_list': [batch_size, num_boxes,
        max_sampled_points] int32 tensor with the part ids for each DensePose
        sampled point (if provided in groundtruth).
      'groundtruth_dp_surface_coords_list': [batch_size, num_boxes,
        max_sampled_points, 4] containing the DensePose surface coordinates for
        each sampled point (if provided in groundtruth).
105
106
107
108
      'groundtruth_group_of': [batch_size, num_boxes] bool tensor indicating
        group_of annotations (if provided in groundtruth).
      'groundtruth_labeled_classes': [batch_size, num_classes] int64
        tensor of 1-indexed classes.
109
110
111
    class_agnostic: Boolean indicating whether detections are class agnostic.
  """
  input_data_fields = fields.InputDataFields()
112
113
114
  groundtruth_boxes = tf.stack(
      detection_model.groundtruth_lists(fields.BoxListFields.boxes))
  groundtruth_boxes_shape = tf.shape(groundtruth_boxes)
115
116
117
  # For class-agnostic models, groundtruth one-hot encodings collapse to all
  # ones.
  if class_agnostic:
118
119
    groundtruth_classes_one_hot = tf.ones(
        [groundtruth_boxes_shape[0], groundtruth_boxes_shape[1], 1])
120
  else:
121
122
    groundtruth_classes_one_hot = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.classes))
123
124
  label_id_offset = 1  # Applying label id offset (b/63711816)
  groundtruth_classes = (
125
      tf.argmax(groundtruth_classes_one_hot, axis=2) + label_id_offset)
126
127
128
129
130
  groundtruth = {
      input_data_fields.groundtruth_boxes: groundtruth_boxes,
      input_data_fields.groundtruth_classes: groundtruth_classes
  }
  if detection_model.groundtruth_has_field(fields.BoxListFields.masks):
131
132
133
    groundtruth[input_data_fields.groundtruth_instance_masks] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.masks))

134
  if detection_model.groundtruth_has_field(fields.BoxListFields.is_crowd):
135
136
137
    groundtruth[input_data_fields.groundtruth_is_crowd] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.is_crowd))

138
139
140
141
142
143
144
145
146
147
148
149
150
151
  if detection_model.groundtruth_has_field(input_data_fields.groundtruth_area):
    groundtruth[input_data_fields.groundtruth_area] = tf.stack(
        detection_model.groundtruth_lists(input_data_fields.groundtruth_area))

  if detection_model.groundtruth_has_field(fields.BoxListFields.keypoints):
    groundtruth[input_data_fields.groundtruth_keypoints] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.keypoints))

  if detection_model.groundtruth_has_field(
      fields.BoxListFields.keypoint_visibilities):
    groundtruth[input_data_fields.groundtruth_keypoint_visibilities] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.keypoint_visibilities))

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
  if detection_model.groundtruth_has_field(fields.BoxListFields.group_of):
    groundtruth[input_data_fields.groundtruth_group_of] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.group_of))

  if detection_model.groundtruth_has_field(
      fields.InputDataFields.groundtruth_labeled_classes):
    labeled_classes_list = detection_model.groundtruth_lists(
        fields.InputDataFields.groundtruth_labeled_classes)
    labeled_classes = [
        tf.where(x)[:, 0] + label_id_offset for x in labeled_classes_list
    ]
    if len(labeled_classes) > 1:
      num_classes = labeled_classes_list[0].shape[0]
      padded_labeled_classes = []
      for x in labeled_classes:
        padding = num_classes - tf.shape(x)[0]
        padded_labeled_classes.append(tf.pad(x, [[0, padding]]))
      groundtruth[input_data_fields.groundtruth_labeled_classes] = tf.stack(
          padded_labeled_classes)
    else:
      groundtruth[input_data_fields.groundtruth_labeled_classes] = tf.stack(
          labeled_classes)

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.densepose_num_points):
    groundtruth[input_data_fields.groundtruth_dp_num_points] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.densepose_num_points))
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.densepose_part_ids):
    groundtruth[input_data_fields.groundtruth_dp_part_ids] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.densepose_part_ids))
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.densepose_surface_coords):
    groundtruth[input_data_fields.groundtruth_dp_surface_coords] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.densepose_surface_coords))
190
191
  groundtruth[input_data_fields.num_groundtruth_boxes] = (
      tf.tile([max_number_of_boxes], multiples=[groundtruth_boxes_shape[0]]))
192
193
194
195
196
197
198
  return groundtruth


def unstack_batch(tensor_dict, unpad_groundtruth_tensors=True):
  """Unstacks all tensors in `tensor_dict` along 0th dimension.

  Unstacks tensor from the tensor dict along 0th dimension and returns a
199
  tensor_dict containing values that are lists of unstacked, unpadded tensors.
200
201
202
203
204
205

  Tensors in the `tensor_dict` are expected to be of one of the three shapes:
  1. [batch_size]
  2. [batch_size, height, width, channels]
  3. [batch_size, num_boxes, d1, d2, ... dn]

206
207
  When unpad_groundtruth_tensors is set to true, unstacked tensors of form 3
  above are sliced along the `num_boxes` dimension using the value in tensor
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
  field.InputDataFields.num_groundtruth_boxes.

  Note that this function has a static list of input data fields and has to be
  kept in sync with the InputDataFields defined in core/standard_fields.py

  Args:
    tensor_dict: A dictionary of batched groundtruth tensors.
    unpad_groundtruth_tensors: Whether to remove padding along `num_boxes`
      dimension of the groundtruth tensors.

  Returns:
    A dictionary where the keys are from fields.InputDataFields and values are
    a list of unstacked (optionally unpadded) tensors.

  Raises:
    ValueError: If unpad_tensors is True and `tensor_dict` does not contain
      `num_groundtruth_boxes` tensor.
  """
226
227
228
  unbatched_tensor_dict = {
      key: tf.unstack(tensor) for key, tensor in tensor_dict.items()
  }
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
  if unpad_groundtruth_tensors:
    if (fields.InputDataFields.num_groundtruth_boxes not in
        unbatched_tensor_dict):
      raise ValueError('`num_groundtruth_boxes` not found in tensor_dict. '
                       'Keys available: {}'.format(
                           unbatched_tensor_dict.keys()))
    unbatched_unpadded_tensor_dict = {}
    unpad_keys = set([
        # List of input data fields that are padded along the num_boxes
        # dimension. This list has to be kept in sync with InputDataFields in
        # standard_fields.py.
        fields.InputDataFields.groundtruth_instance_masks,
        fields.InputDataFields.groundtruth_classes,
        fields.InputDataFields.groundtruth_boxes,
        fields.InputDataFields.groundtruth_keypoints,
244
        fields.InputDataFields.groundtruth_keypoint_visibilities,
245
246
247
        fields.InputDataFields.groundtruth_dp_num_points,
        fields.InputDataFields.groundtruth_dp_part_ids,
        fields.InputDataFields.groundtruth_dp_surface_coords,
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        fields.InputDataFields.groundtruth_group_of,
        fields.InputDataFields.groundtruth_difficult,
        fields.InputDataFields.groundtruth_is_crowd,
        fields.InputDataFields.groundtruth_area,
        fields.InputDataFields.groundtruth_weights
    ]).intersection(set(unbatched_tensor_dict.keys()))

    for key in unpad_keys:
      unpadded_tensor_list = []
      for num_gt, padded_tensor in zip(
          unbatched_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
          unbatched_tensor_dict[key]):
        tensor_shape = shape_utils.combined_static_and_dynamic_shape(
            padded_tensor)
        slice_begin = tf.zeros([len(tensor_shape)], dtype=tf.int32)
        slice_size = tf.stack(
            [num_gt] + [-1 if dim is None else dim for dim in tensor_shape[1:]])
        unpadded_tensor = tf.slice(padded_tensor, slice_begin, slice_size)
        unpadded_tensor_list.append(unpadded_tensor)
      unbatched_unpadded_tensor_dict[key] = unpadded_tensor_list
268

269
270
271
272
273
    unbatched_tensor_dict.update(unbatched_unpadded_tensor_dict)

  return unbatched_tensor_dict


pkulzc's avatar
pkulzc committed
274
def provide_groundtruth(model, labels):
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
  """Provides the labels to a model as groundtruth.

  This helper function extracts the corresponding boxes, classes,
  keypoints, weights, masks, etc. from the labels, and provides it
  as groundtruth to the models.

  Args:
    model: The detection model to provide groundtruth to.
    labels: The labels for the training or evaluation inputs.
  """
  gt_boxes_list = labels[fields.InputDataFields.groundtruth_boxes]
  gt_classes_list = labels[fields.InputDataFields.groundtruth_classes]
  gt_masks_list = None
  if fields.InputDataFields.groundtruth_instance_masks in labels:
    gt_masks_list = labels[
        fields.InputDataFields.groundtruth_instance_masks]
  gt_keypoints_list = None
  if fields.InputDataFields.groundtruth_keypoints in labels:
    gt_keypoints_list = labels[fields.InputDataFields.groundtruth_keypoints]
294
295
296
297
  gt_keypoint_visibilities_list = None
  if fields.InputDataFields.groundtruth_keypoint_visibilities in labels:
    gt_keypoint_visibilities_list = labels[
        fields.InputDataFields.groundtruth_keypoint_visibilities]
298
299
300
301
302
303
304
305
306
307
308
309
  gt_dp_num_points_list = None
  if fields.InputDataFields.groundtruth_dp_num_points in labels:
    gt_dp_num_points_list = labels[
        fields.InputDataFields.groundtruth_dp_num_points]
  gt_dp_part_ids_list = None
  if fields.InputDataFields.groundtruth_dp_part_ids in labels:
    gt_dp_part_ids_list = labels[
        fields.InputDataFields.groundtruth_dp_part_ids]
  gt_dp_surface_coords_list = None
  if fields.InputDataFields.groundtruth_dp_surface_coords in labels:
    gt_dp_surface_coords_list = labels[
        fields.InputDataFields.groundtruth_dp_surface_coords]
310
311
312
313
314
315
316
317
318
319
  gt_weights_list = None
  if fields.InputDataFields.groundtruth_weights in labels:
    gt_weights_list = labels[fields.InputDataFields.groundtruth_weights]
  gt_confidences_list = None
  if fields.InputDataFields.groundtruth_confidences in labels:
    gt_confidences_list = labels[
        fields.InputDataFields.groundtruth_confidences]
  gt_is_crowd_list = None
  if fields.InputDataFields.groundtruth_is_crowd in labels:
    gt_is_crowd_list = labels[fields.InputDataFields.groundtruth_is_crowd]
320
321
322
  gt_group_of_list = None
  if fields.InputDataFields.groundtruth_group_of in labels:
    gt_group_of_list = labels[fields.InputDataFields.groundtruth_group_of]
323
324
325
326
327
328
329
  gt_area_list = None
  if fields.InputDataFields.groundtruth_area in labels:
    gt_area_list = labels[fields.InputDataFields.groundtruth_area]
  gt_labeled_classes = None
  if fields.InputDataFields.groundtruth_labeled_classes in labels:
    gt_labeled_classes = labels[
        fields.InputDataFields.groundtruth_labeled_classes]
330
331
332
333
  model.provide_groundtruth(
      groundtruth_boxes_list=gt_boxes_list,
      groundtruth_classes_list=gt_classes_list,
      groundtruth_confidences_list=gt_confidences_list,
334
      groundtruth_labeled_classes=gt_labeled_classes,
335
336
      groundtruth_masks_list=gt_masks_list,
      groundtruth_keypoints_list=gt_keypoints_list,
337
      groundtruth_keypoint_visibilities_list=gt_keypoint_visibilities_list,
338
339
340
      groundtruth_dp_num_points_list=gt_dp_num_points_list,
      groundtruth_dp_part_ids_list=gt_dp_part_ids_list,
      groundtruth_dp_surface_coords_list=gt_dp_surface_coords_list,
341
      groundtruth_weights_list=gt_weights_list,
342
      groundtruth_is_crowd_list=gt_is_crowd_list,
343
      groundtruth_group_of_list=gt_group_of_list,
344
      groundtruth_area_list=gt_area_list)
345
346


347
def create_model_fn(detection_model_fn, configs, hparams=None, use_tpu=False,
348
                    postprocess_on_cpu=False):
349
350
351
352
353
354
355
356
  """Creates a model function for `Estimator`.

  Args:
    detection_model_fn: Function that returns a `DetectionModel` instance.
    configs: Dictionary of pipeline config objects.
    hparams: `HParams` object.
    use_tpu: Boolean indicating whether model should be constructed for
        use on TPU.
357
358
    postprocess_on_cpu: When use_tpu and postprocess_on_cpu is true, postprocess
        is scheduled on the host cpu.
359
360
361
362
363
364

  Returns:
    `model_fn` for `Estimator`.
  """
  train_config = configs['train_config']
  eval_input_config = configs['eval_input_config']
365
  eval_config = configs['eval_config']
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

  def model_fn(features, labels, mode, params=None):
    """Constructs the object detection model.

    Args:
      features: Dictionary of feature tensors, returned from `input_fn`.
      labels: Dictionary of groundtruth tensors if mode is TRAIN or EVAL,
        otherwise None.
      mode: Mode key from tf.estimator.ModeKeys.
      params: Parameter dictionary passed from the estimator.

    Returns:
      An `EstimatorSpec` that encapsulates the model and its serving
        configurations.
    """
    params = params or {}
    total_loss, train_op, detections, export_outputs = None, None, None, None
    is_training = mode == tf.estimator.ModeKeys.TRAIN
384
385
386
387

    # Make sure to set the Keras learning phase. True during training,
    # False for inference.
    tf.keras.backend.set_learning_phase(is_training)
388
389
390
391
392
    # Set policy for mixed-precision training with Keras-based models.
    if use_tpu and train_config.use_bfloat16:
      from tensorflow.python.keras.engine import base_layer_utils  # pylint: disable=g-import-not-at-top
      # Enable v2 behavior, as `mixed_bfloat16` is only supported in TF 2.0.
      base_layer_utils.enable_v2_dtype_behavior()
393
      tf2.keras.mixed_precision.experimental.set_policy(
394
          'mixed_bfloat16')
395
396
    detection_model = detection_model_fn(
        is_training=is_training, add_summaries=(not use_tpu))
397
398
399
400
401
402
403
    scaffold_fn = None

    if mode == tf.estimator.ModeKeys.TRAIN:
      labels = unstack_batch(
          labels,
          unpad_groundtruth_tensors=train_config.unpad_groundtruth_tensors)
    elif mode == tf.estimator.ModeKeys.EVAL:
404
405
406
407
408
      # For evaling on train data, it is necessary to check whether groundtruth
      # must be unpadded.
      boxes_shape = (
          labels[fields.InputDataFields.groundtruth_boxes].get_shape()
          .as_list())
409
      unpad_groundtruth_tensors = boxes_shape[1] is not None and not use_tpu
410
411
      labels = unstack_batch(
          labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)
412
413

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
pkulzc's avatar
pkulzc committed
414
      provide_groundtruth(detection_model, labels)
415
416

    preprocessed_images = features[fields.InputDataFields.image]
417
418
419

    side_inputs = detection_model.get_side_inputs(features)

420
    if use_tpu and train_config.use_bfloat16:
421
      with tf.tpu.bfloat16_scope():
422
423
        prediction_dict = detection_model.predict(
            preprocessed_images,
424
            features[fields.InputDataFields.true_image_shape], **side_inputs)
425
        prediction_dict = ops.bfloat16_to_float32_nested(prediction_dict)
426
427
428
    else:
      prediction_dict = detection_model.predict(
          preprocessed_images,
429
          features[fields.InputDataFields.true_image_shape], **side_inputs)
430
431
432
433

    def postprocess_wrapper(args):
      return detection_model.postprocess(args[0], args[1])

434
    if mode in (tf.estimator.ModeKeys.EVAL, tf.estimator.ModeKeys.PREDICT):
435
      if use_tpu and postprocess_on_cpu:
436
        detections = tf.tpu.outside_compilation(
437
438
439
440
441
442
443
            postprocess_wrapper,
            (prediction_dict,
             features[fields.InputDataFields.true_image_shape]))
      else:
        detections = postprocess_wrapper((
            prediction_dict,
            features[fields.InputDataFields.true_image_shape]))
444
445

    if mode == tf.estimator.ModeKeys.TRAIN:
446
447
      load_pretrained = hparams.load_pretrained if hparams else False
      if train_config.fine_tune_checkpoint and load_pretrained:
448
449
450
451
452
453
454
455
        if not train_config.fine_tune_checkpoint_type:
          # train_config.from_detection_checkpoint field is deprecated. For
          # backward compatibility, set train_config.fine_tune_checkpoint_type
          # based on train_config.from_detection_checkpoint.
          if train_config.from_detection_checkpoint:
            train_config.fine_tune_checkpoint_type = 'detection'
          else:
            train_config.fine_tune_checkpoint_type = 'classification'
456
        asg_map = detection_model.restore_map(
457
            fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type,
458
459
460
461
            load_all_detection_checkpoint_vars=(
                train_config.load_all_detection_checkpoint_vars))
        available_var_map = (
            variables_helper.get_variables_available_in_checkpoint(
462
463
                asg_map,
                train_config.fine_tune_checkpoint,
464
465
                include_global_step=False))
        if use_tpu:
466

467
468
469
470
          def tpu_scaffold():
            tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                          available_var_map)
            return tf.train.Scaffold()
471

472
473
474
475
476
477
          scaffold_fn = tpu_scaffold
        else:
          tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                        available_var_map)

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
      if (mode == tf.estimator.ModeKeys.EVAL and
          eval_config.use_dummy_loss_in_eval):
        total_loss = tf.constant(1.0)
        losses_dict = {'Loss/total_loss': total_loss}
      else:
        losses_dict = detection_model.loss(
            prediction_dict, features[fields.InputDataFields.true_image_shape])
        losses = [loss_tensor for loss_tensor in losses_dict.values()]
        if train_config.add_regularization_loss:
          regularization_losses = detection_model.regularization_losses()
          if use_tpu and train_config.use_bfloat16:
            regularization_losses = ops.bfloat16_to_float32_nested(
                regularization_losses)
          if regularization_losses:
            regularization_loss = tf.add_n(
                regularization_losses, name='regularization_loss')
            losses.append(regularization_loss)
            losses_dict['Loss/regularization_loss'] = regularization_loss
        total_loss = tf.add_n(losses, name='total_loss')
        losses_dict['Loss/total_loss'] = total_loss
498

499
500
501
502
503
      if 'graph_rewriter_config' in configs:
        graph_rewriter_fn = graph_rewriter_builder.build(
            configs['graph_rewriter_config'], is_training=is_training)
        graph_rewriter_fn()

504
505
      # TODO(rathodv): Stop creating optimizer summary vars in EVAL mode once we
      # can write learning rate summaries on TPU without host calls.
506
507
508
509
      global_step = tf.train.get_or_create_global_step()
      training_optimizer, optimizer_summary_vars = optimizer_builder.build(
          train_config.optimizer)

510
    if mode == tf.estimator.ModeKeys.TRAIN:
511
      if use_tpu:
512
        training_optimizer = tf.tpu.CrossShardOptimizer(training_optimizer)
513
514
515

      # Optionally freeze some layers by setting their gradients to be zero.
      trainable_variables = None
516
517
518
519
520
521
      include_variables = (
          train_config.update_trainable_variables
          if train_config.update_trainable_variables else None)
      exclude_variables = (
          train_config.freeze_variables
          if train_config.freeze_variables else None)
522
      trainable_variables = slim.filter_variables(
523
524
525
          tf.trainable_variables(),
          include_patterns=include_variables,
          exclude_patterns=exclude_variables)
526
527
528
529
530
531
532
533
534

      clip_gradients_value = None
      if train_config.gradient_clipping_by_norm > 0:
        clip_gradients_value = train_config.gradient_clipping_by_norm

      if not use_tpu:
        for var in optimizer_summary_vars:
          tf.summary.scalar(var.op.name, var)
      summaries = [] if use_tpu else None
535
536
      if train_config.summarize_gradients:
        summaries = ['gradients', 'gradient_norm', 'global_gradient_norm']
537
      train_op = slim.optimizers.optimize_loss(
538
539
540
541
542
          loss=total_loss,
          global_step=global_step,
          learning_rate=None,
          clip_gradients=clip_gradients_value,
          optimizer=training_optimizer,
543
          update_ops=detection_model.updates(),
544
545
546
547
548
          variables=trainable_variables,
          summaries=summaries,
          name='')  # Preventing scope prefix on all variables.

    if mode == tf.estimator.ModeKeys.PREDICT:
549
      exported_output = exporter_lib.add_output_tensor_nodes(detections)
550
551
      export_outputs = {
          tf.saved_model.signature_constants.PREDICT_METHOD_NAME:
552
              tf.estimator.export.PredictOutput(exported_output)
553
554
555
      }

    eval_metric_ops = None
556
    scaffold = None
557
    if mode == tf.estimator.ModeKeys.EVAL:
558
559
      class_agnostic = (
          fields.DetectionResultFields.detection_classes not in detections)
560
561
562
      groundtruth = _prepare_groundtruth_for_eval(
          detection_model, class_agnostic,
          eval_input_config.max_number_of_boxes)
563
      use_original_images = fields.InputDataFields.original_image in features
pkulzc's avatar
pkulzc committed
564
      if use_original_images:
565
566
567
568
569
        eval_images = features[fields.InputDataFields.original_image]
        true_image_shapes = tf.slice(
            features[fields.InputDataFields.true_image_shape], [0, 0], [-1, 3])
        original_image_spatial_shapes = features[fields.InputDataFields
                                                 .original_image_spatial_shape]
pkulzc's avatar
pkulzc committed
570
571
      else:
        eval_images = features[fields.InputDataFields.image]
572
573
        true_image_shapes = None
        original_image_spatial_shapes = None
pkulzc's avatar
pkulzc committed
574

575
576
577
      eval_dict = eval_util.result_dict_for_batched_example(
          eval_images,
          features[inputs.HASH_KEY],
578
579
580
          detections,
          groundtruth,
          class_agnostic=class_agnostic,
581
582
583
          scale_to_absolute=True,
          original_image_spatial_shapes=original_image_spatial_shapes,
          true_image_shapes=true_image_shapes)
584

585
586
587
588
      if fields.InputDataFields.image_additional_channels in features:
        eval_dict[fields.InputDataFields.image_additional_channels] = features[
            fields.InputDataFields.image_additional_channels]

589
590
591
592
593
      if class_agnostic:
        category_index = label_map_util.create_class_agnostic_category_index()
      else:
        category_index = label_map_util.create_category_index_from_labelmap(
            eval_input_config.label_map_path)
594
      vis_metric_ops = None
595
      if not use_tpu and use_original_images:
596
597
598
        keypoint_edges = [
            (kp.start, kp.end) for kp in eval_config.keypoint_edge]

599
600
601
602
603
        eval_metric_op_vis = vis_utils.VisualizeSingleFrameDetections(
            category_index,
            max_examples_to_draw=eval_config.num_visualizations,
            max_boxes_to_draw=eval_config.max_num_boxes_to_visualize,
            min_score_thresh=eval_config.min_score_threshold,
604
605
            use_normalized_coordinates=False,
            keypoint_edges=keypoint_edges or None)
606
607
        vis_metric_ops = eval_metric_op_vis.get_estimator_eval_metric_ops(
            eval_dict)
608

609
610
      # Eval metrics on a single example.
      eval_metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
DefineFC's avatar
DefineFC committed
611
          eval_config, list(category_index.values()), eval_dict)
612
613
614
615
      for loss_key, loss_tensor in iter(losses_dict.items()):
        eval_metric_ops[loss_key] = tf.metrics.mean(loss_tensor)
      for var in optimizer_summary_vars:
        eval_metric_ops[var.op.name] = (var, tf.no_op())
616
617
      if vis_metric_ops is not None:
        eval_metric_ops.update(vis_metric_ops)
618
      eval_metric_ops = {str(k): v for k, v in eval_metric_ops.items()}
619

620
621
622
623
624
625
626
627
628
629
      if eval_config.use_moving_averages:
        variable_averages = tf.train.ExponentialMovingAverage(0.0)
        variables_to_restore = variable_averages.variables_to_restore()
        keep_checkpoint_every_n_hours = (
            train_config.keep_checkpoint_every_n_hours)
        saver = tf.train.Saver(
            variables_to_restore,
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)
        scaffold = tf.train.Scaffold(saver=saver)

630
631
    # EVAL executes on CPU, so use regular non-TPU EstimatorSpec.
    if use_tpu and mode != tf.estimator.ModeKeys.EVAL:
632
      return tf.estimator.tpu.TPUEstimatorSpec(
633
634
635
636
637
638
639
640
          mode=mode,
          scaffold_fn=scaffold_fn,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metrics=eval_metric_ops,
          export_outputs=export_outputs)
    else:
641
642
643
644
645
646
647
648
649
      if scaffold is None:
        keep_checkpoint_every_n_hours = (
            train_config.keep_checkpoint_every_n_hours)
        saver = tf.train.Saver(
            sharded=True,
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours,
            save_relative_paths=True)
        tf.add_to_collection(tf.GraphKeys.SAVERS, saver)
        scaffold = tf.train.Scaffold(saver=saver)
650
651
652
653
654
655
      return tf.estimator.EstimatorSpec(
          mode=mode,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metric_ops=eval_metric_ops,
656
657
          export_outputs=export_outputs,
          scaffold=scaffold)
658
659
660
661

  return model_fn


662
def create_estimator_and_inputs(run_config,
663
664
                                hparams=None,
                                pipeline_config_path=None,
665
                                config_override=None,
666
                                train_steps=None,
667
                                sample_1_of_n_eval_examples=1,
668
                                sample_1_of_n_eval_on_train_examples=1,
669
670
671
672
673
                                model_fn_creator=create_model_fn,
                                use_tpu_estimator=False,
                                use_tpu=False,
                                num_shards=1,
                                params=None,
674
                                override_eval_num_epochs=True,
675
                                save_final_config=False,
676
677
                                postprocess_on_cpu=False,
                                export_to_tpu=None,
678
679
                                **kwargs):
  """Creates `Estimator`, input functions, and steps.
680
681
682

  Args:
    run_config: A `RunConfig`.
683
    hparams: (optional) A `HParams`.
684
    pipeline_config_path: A path to a pipeline config file.
685
686
    config_override: A pipeline_pb2.TrainEvalPipelineConfig text proto to
      override the config from `pipeline_config_path`.
687
688
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
689
690
691
692
693
    sample_1_of_n_eval_examples: Integer representing how often an eval example
      should be sampled. If 1, will sample all examples.
    sample_1_of_n_eval_on_train_examples: Similar to
      `sample_1_of_n_eval_examples`, except controls the sampling of training
      data for evaluation.
694
695
696
697
698
699
700
701
702
703
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

704
705
706
707
708
709
710
711
    use_tpu_estimator: Whether a `TPUEstimator` should be returned. If False,
      an `Estimator` will be returned.
    use_tpu: Boolean, whether training and evaluation should run on TPU. Only
      used if `use_tpu_estimator` is True.
    num_shards: Number of shards (TPU cores). Only used if `use_tpu_estimator`
      is True.
    params: Parameter dictionary passed from the estimator. Only used if
      `use_tpu_estimator` is True.
712
713
    override_eval_num_epochs: Whether to overwrite the number of epochs to 1 for
      eval_input.
714
715
    save_final_config: Whether to save final config (obtained after applying
      overrides) to `estimator.model_dir`.
716
717
718
719
720
    postprocess_on_cpu: When use_tpu and postprocess_on_cpu are true,
      postprocess is scheduled on the host cpu.
    export_to_tpu: When use_tpu and export_to_tpu are true,
      `export_savedmodel()` exports a metagraph for serving on TPU besides the
      one on CPU.
721
722
723
    **kwargs: Additional keyword arguments for configuration override.

  Returns:
724
725
726
    A dictionary with the following fields:
    'estimator': An `Estimator` or `TPUEstimator`.
    'train_input_fn': A training input function.
727
728
    'eval_input_fns': A list of all evaluation input functions.
    'eval_input_names': A list of names for each evaluation input.
729
    'eval_on_train_input_fn': An evaluation-on-train input function.
730
731
732
    'predict_input_fn': A prediction input function.
    'train_steps': Number of training steps. Either directly from input or from
      configuration.
733
  """
734
735
736
737
  get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[
      'get_configs_from_pipeline_file']
  merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[
      'merge_external_params_with_configs']
738
739
  create_pipeline_proto_from_configs = MODEL_BUILD_UTIL_MAP[
      'create_pipeline_proto_from_configs']
740
741
742
  create_train_input_fn = MODEL_BUILD_UTIL_MAP['create_train_input_fn']
  create_eval_input_fn = MODEL_BUILD_UTIL_MAP['create_eval_input_fn']
  create_predict_input_fn = MODEL_BUILD_UTIL_MAP['create_predict_input_fn']
743
  detection_model_fn_base = MODEL_BUILD_UTIL_MAP['detection_model_fn_base']
744

745
746
  configs = get_configs_from_pipeline_file(
      pipeline_config_path, config_override=config_override)
747
748
  kwargs.update({
      'train_steps': train_steps,
749
      'use_bfloat16': configs['train_config'].use_bfloat16 and use_tpu
750
  })
pkulzc's avatar
pkulzc committed
751
752
753
754
  if sample_1_of_n_eval_examples >= 1:
    kwargs.update({
        'sample_1_of_n_eval_examples': sample_1_of_n_eval_examples
    })
755
756
757
758
  if override_eval_num_epochs:
    kwargs.update({'eval_num_epochs': 1})
    tf.logging.warning(
        'Forced number of epochs for all eval validations to be 1.')
759
  configs = merge_external_params_with_configs(
760
      configs, hparams, kwargs_dict=kwargs)
761
762
763
764
  model_config = configs['model']
  train_config = configs['train_config']
  train_input_config = configs['train_input_config']
  eval_config = configs['eval_config']
765
766
767
768
769
770
771
772
773
774
775
  eval_input_configs = configs['eval_input_configs']
  eval_on_train_input_config = copy.deepcopy(train_input_config)
  eval_on_train_input_config.sample_1_of_n_examples = (
      sample_1_of_n_eval_on_train_examples)
  if override_eval_num_epochs and eval_on_train_input_config.num_epochs != 1:
    tf.logging.warning('Expected number of evaluation epochs is 1, but '
                       'instead encountered `eval_on_train_input_config'
                       '.num_epochs` = '
                       '{}. Overwriting `num_epochs` to 1.'.format(
                           eval_on_train_input_config.num_epochs))
    eval_on_train_input_config.num_epochs = 1
776

777
778
779
  # update train_steps from config but only when non-zero value is provided
  if train_steps is None and train_config.num_steps != 0:
    train_steps = train_config.num_steps
780
781

  detection_model_fn = functools.partial(
782
      detection_model_fn_base, model_config=model_config)
783

784
  # Create the input functions for TRAIN/EVAL/PREDICT.
785
  train_input_fn = create_train_input_fn(
786
787
788
      train_config=train_config,
      train_input_config=train_input_config,
      model_config=model_config)
789
790
791
792
793
794
795
796
797
  eval_input_fns = [
      create_eval_input_fn(
          eval_config=eval_config,
          eval_input_config=eval_input_config,
          model_config=model_config) for eval_input_config in eval_input_configs
  ]
  eval_input_names = [
      eval_input_config.name for eval_input_config in eval_input_configs
  ]
798
799
  eval_on_train_input_fn = create_eval_input_fn(
      eval_config=eval_config,
800
      eval_input_config=eval_on_train_input_config,
801
      model_config=model_config)
802
  predict_input_fn = create_predict_input_fn(
803
      model_config=model_config, predict_input_config=eval_input_configs[0])
804

805
  # Read export_to_tpu from hparams if not passed.
806
  if export_to_tpu is None and hparams is not None:
807
    export_to_tpu = hparams.get('export_to_tpu', False)
808
809
  tf.logging.info('create_estimator_and_inputs: use_tpu %s, export_to_tpu %s',
                  use_tpu, export_to_tpu)
810
811
  model_fn = model_fn_creator(detection_model_fn, configs, hparams, use_tpu,
                              postprocess_on_cpu)
812
  if use_tpu_estimator:
813
    estimator = tf.estimator.tpu.TPUEstimator(
814
815
816
817
818
819
        model_fn=model_fn,
        train_batch_size=train_config.batch_size,
        # For each core, only batch size 1 is supported for eval.
        eval_batch_size=num_shards * 1 if use_tpu else 1,
        use_tpu=use_tpu,
        config=run_config,
820
821
        export_to_tpu=export_to_tpu,
        eval_on_tpu=False,  # Eval runs on CPU, so disable eval on TPU
pkulzc's avatar
pkulzc committed
822
        params=params if params else {})
823
824
  else:
    estimator = tf.estimator.Estimator(model_fn=model_fn, config=run_config)
825

826
  # Write the as-run pipeline config to disk.
827
  if run_config.is_chief and save_final_config:
828
    pipeline_config_final = create_pipeline_proto_from_configs(configs)
829
    config_util.save_pipeline_config(pipeline_config_final, estimator.model_dir)
830

831
  return dict(
832
833
      estimator=estimator,
      train_input_fn=train_input_fn,
834
835
      eval_input_fns=eval_input_fns,
      eval_input_names=eval_input_names,
836
      eval_on_train_input_fn=eval_on_train_input_fn,
837
      predict_input_fn=predict_input_fn,
838
      train_steps=train_steps)
839
840
841


def create_train_and_eval_specs(train_input_fn,
842
                                eval_input_fns,
843
                                eval_on_train_input_fn,
844
845
846
847
                                predict_input_fn,
                                train_steps,
                                eval_on_train_data=False,
                                final_exporter_name='Servo',
848
                                eval_spec_names=None):
849
850
851
852
  """Creates a `TrainSpec` and `EvalSpec`s.

  Args:
    train_input_fn: Function that produces features and labels on train data.
853
854
    eval_input_fns: A list of functions that produce features and labels on eval
      data.
855
856
    eval_on_train_input_fn: Function that produces features and labels for
      evaluation on train data.
857
858
859
860
861
    predict_input_fn: Function that produces features for inference.
    train_steps: Number of training steps.
    eval_on_train_data: Whether to evaluate model on training data. Default is
      False.
    final_exporter_name: String name given to `FinalExporter`.
862
    eval_spec_names: A list of string names for each `EvalSpec`.
863
864

  Returns:
865
866
867
    Tuple of `TrainSpec` and list of `EvalSpecs`. If `eval_on_train_data` is
    True, the last `EvalSpec` in the list will correspond to training data. The
    rest EvalSpecs in the list are evaluation datas.
868
869
870
871
  """
  train_spec = tf.estimator.TrainSpec(
      input_fn=train_input_fn, max_steps=train_steps)

872
  if eval_spec_names is None:
873
    eval_spec_names = [str(i) for i in range(len(eval_input_fns))]
874
875

  eval_specs = []
876
877
878
879
880
881
882
883
  for index, (eval_spec_name, eval_input_fn) in enumerate(
      zip(eval_spec_names, eval_input_fns)):
    # Uses final_exporter_name as exporter_name for the first eval spec for
    # backward compatibility.
    if index == 0:
      exporter_name = final_exporter_name
    else:
      exporter_name = '{}_{}'.format(final_exporter_name, eval_spec_name)
884
885
886
887
888
889
890
891
    exporter = tf.estimator.FinalExporter(
        name=exporter_name, serving_input_receiver_fn=predict_input_fn)
    eval_specs.append(
        tf.estimator.EvalSpec(
            name=eval_spec_name,
            input_fn=eval_input_fn,
            steps=None,
            exporters=exporter))
892
893
894
895

  if eval_on_train_data:
    eval_specs.append(
        tf.estimator.EvalSpec(
896
            name='eval_on_train', input_fn=eval_on_train_input_fn, steps=None))
897
898

  return train_spec, eval_specs
899
900


901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
def _evaluate_checkpoint(estimator,
                         input_fn,
                         checkpoint_path,
                         name,
                         max_retries=0):
  """Evaluates a checkpoint.

  Args:
    estimator: Estimator object to use for evaluation.
    input_fn: Input function to use for evaluation.
    checkpoint_path: Path of the checkpoint to evaluate.
    name: Namescope for eval summary.
    max_retries: Maximum number of times to retry the evaluation on encountering
      a tf.errors.InvalidArgumentError. If negative, will always retry the
      evaluation.

  Returns:
    Estimator evaluation results.
  """
  always_retry = True if max_retries < 0 else False
  retries = 0
  while always_retry or retries <= max_retries:
    try:
      return estimator.evaluate(
          input_fn=input_fn,
          steps=None,
          checkpoint_path=checkpoint_path,
          name=name)
    except tf.errors.InvalidArgumentError as e:
      if always_retry or retries < max_retries:
        tf.logging.info('Retrying checkpoint evaluation after exception: %s', e)
        retries += 1
      else:
        raise e


def continuous_eval(estimator,
                    model_dir,
                    input_fn,
                    train_steps,
                    name,
                    max_retries=0):
943
944
945
946
947
948
949
950
951
  """Perform continuous evaluation on checkpoints written to a model directory.

  Args:
    estimator: Estimator object to use for evaluation.
    model_dir: Model directory to read checkpoints for continuous evaluation.
    input_fn: Input function to use for evaluation.
    train_steps: Number of training steps. This is used to infer the last
      checkpoint and stop evaluation loop.
    name: Namescope for eval summary.
952
953
954
    max_retries: Maximum number of times to retry the evaluation on encountering
      a tf.errors.InvalidArgumentError. If negative, will always retry the
      evaluation.
955
  """
956

957
958
959
960
  def terminate_eval():
    tf.logging.info('Terminating eval after 180 seconds of no checkpoints')
    return True

961
  for ckpt in tf.train.checkpoints_iterator(
962
963
964
965
966
      model_dir, min_interval_secs=180, timeout=None,
      timeout_fn=terminate_eval):

    tf.logging.info('Starting Evaluation.')
    try:
967
968
969
970
971
972
      eval_results = _evaluate_checkpoint(
          estimator=estimator,
          input_fn=input_fn,
          checkpoint_path=ckpt,
          name=name,
          max_retries=max_retries)
973
974
975
976
977
978
979
980
981
982
983
984
985
986
      tf.logging.info('Eval results: %s' % eval_results)

      # Terminate eval job when final checkpoint is reached
      current_step = int(os.path.basename(ckpt).split('-')[1])
      if current_step >= train_steps:
        tf.logging.info(
            'Evaluation finished after training step %d' % current_step)
        break

    except tf.errors.NotFoundError:
      tf.logging.info(
          'Checkpoint %s no longer exists, skipping checkpoint' % ckpt)


987
988
989
990
991
992
993
994
def populate_experiment(run_config,
                        hparams,
                        pipeline_config_path,
                        train_steps=None,
                        eval_steps=None,
                        model_fn_creator=create_model_fn,
                        **kwargs):
  """Populates an `Experiment` object.
995

996
997
  EXPERIMENT CLASS IS DEPRECATED. Please switch to
  tf.estimator.train_and_evaluate. As an example, see model_main.py.
998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
  Args:
    run_config: A `RunConfig`.
    hparams: A `HParams`.
    pipeline_config_path: A path to a pipeline config file.
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
    eval_steps: Number of evaluation steps per evaluation cycle. If None, the
      number of evaluation steps is set from the `EvalConfig` proto.
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

    **kwargs: Additional keyword arguments for configuration override.

  Returns:
    An `Experiment` that defines all aspects of training, evaluation, and
    export.
  """
  tf.logging.warning('Experiment is being deprecated. Please use '
                     'tf.estimator.train_and_evaluate(). See model_main.py for '
                     'an example.')
  train_and_eval_dict = create_estimator_and_inputs(
      run_config,
      hparams,
      pipeline_config_path,
      train_steps=train_steps,
      eval_steps=eval_steps,
      model_fn_creator=model_fn_creator,
1033
      save_final_config=True,
1034
1035
1036
      **kwargs)
  estimator = train_and_eval_dict['estimator']
  train_input_fn = train_and_eval_dict['train_input_fn']
1037
  eval_input_fns = train_and_eval_dict['eval_input_fns']
1038
1039
1040
1041
  predict_input_fn = train_and_eval_dict['predict_input_fn']
  train_steps = train_and_eval_dict['train_steps']

  export_strategies = [
1042
      contrib_learn.utils.saved_model_export_utils.make_export_strategy(
1043
1044
1045
          serving_input_fn=predict_input_fn)
  ]

1046
  return contrib_learn.Experiment(
1047
1048
      estimator=estimator,
      train_input_fn=train_input_fn,
1049
      eval_input_fn=eval_input_fns[0],
1050
      train_steps=train_steps,
1051
      eval_steps=None,
1052
      export_strategies=export_strategies,
1053
1054
      eval_delay_secs=120,
  )