factory.py 15.9 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
16
"""Factory methods to build models."""

Abdullah Rashwan's avatar
Abdullah Rashwan committed
17
from typing import Optional
Abdullah Rashwan's avatar
Abdullah Rashwan committed
18

Abdullah Rashwan's avatar
Abdullah Rashwan committed
19
20
21
22
23
import tensorflow as tf

from official.vision.beta.configs import image_classification as classification_cfg
from official.vision.beta.configs import maskrcnn as maskrcnn_cfg
from official.vision.beta.configs import retinanet as retinanet_cfg
Abdullah Rashwan's avatar
Abdullah Rashwan committed
24
from official.vision.beta.configs import semantic_segmentation as segmentation_cfg
Yeqing Li's avatar
Yeqing Li committed
25
from official.vision.beta.modeling import backbones
Abdullah Rashwan's avatar
Abdullah Rashwan committed
26
from official.vision.beta.modeling import classification_model
27
from official.vision.beta.modeling import decoders
Abdullah Rashwan's avatar
Abdullah Rashwan committed
28
29
from official.vision.beta.modeling import maskrcnn_model
from official.vision.beta.modeling import retinanet_model
Abdullah Rashwan's avatar
Abdullah Rashwan committed
30
from official.vision.beta.modeling import segmentation_model
Abdullah Rashwan's avatar
Abdullah Rashwan committed
31
32
from official.vision.beta.modeling.heads import dense_prediction_heads
from official.vision.beta.modeling.heads import instance_heads
Abdullah Rashwan's avatar
Abdullah Rashwan committed
33
from official.vision.beta.modeling.heads import segmentation_heads
Abdullah Rashwan's avatar
Abdullah Rashwan committed
34
35
36
37
38
39
40
41
42
43
from official.vision.beta.modeling.layers import detection_generator
from official.vision.beta.modeling.layers import mask_sampler
from official.vision.beta.modeling.layers import roi_aligner
from official.vision.beta.modeling.layers import roi_generator
from official.vision.beta.modeling.layers import roi_sampler


def build_classification_model(
    input_specs: tf.keras.layers.InputSpec,
    model_config: classification_cfg.ImageClassificationModel,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
44
45
46
    l2_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
    skip_logits_layer: bool = False,
    backbone: Optional[tf.keras.Model] = None) -> tf.keras.Model:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
47
  """Builds the classification model."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
48
  norm_activation_config = model_config.norm_activation
Abdullah Rashwan's avatar
Abdullah Rashwan committed
49
50
51
52
53
54
  if not backbone:
    backbone = backbones.factory.build_backbone(
        input_specs=input_specs,
        backbone_config=model_config.backbone,
        norm_activation_config=norm_activation_config,
        l2_regularizer=l2_regularizer)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
55
56
57
58
59
60

  model = classification_model.ClassificationModel(
      backbone=backbone,
      num_classes=model_config.num_classes,
      input_specs=input_specs,
      dropout_rate=model_config.dropout_rate,
61
      kernel_initializer=model_config.kernel_initializer,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
62
63
64
65
      kernel_regularizer=l2_regularizer,
      add_head_batch_norm=model_config.add_head_batch_norm,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
Pengchong Jin's avatar
Pengchong Jin committed
66
67
      norm_epsilon=norm_activation_config.norm_epsilon,
      skip_logits_layer=skip_logits_layer)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
68
69
70
  return model


Abdullah Rashwan's avatar
Abdullah Rashwan committed
71
72
73
74
75
76
def build_maskrcnn(input_specs: tf.keras.layers.InputSpec,
                   model_config: maskrcnn_cfg.MaskRCNN,
                   l2_regularizer: Optional[
                       tf.keras.regularizers.Regularizer] = None,
                   backbone: Optional[tf.keras.Model] = None,
                   decoder: Optional[tf.keras.Model] = None) -> tf.keras.Model:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
77
  """Builds Mask R-CNN model."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
78
  norm_activation_config = model_config.norm_activation
Abdullah Rashwan's avatar
Abdullah Rashwan committed
79
80
81
82
83
84
  if not backbone:
    backbone = backbones.factory.build_backbone(
        input_specs=input_specs,
        backbone_config=model_config.backbone,
        norm_activation_config=norm_activation_config,
        l2_regularizer=l2_regularizer)
Cristina Vasconcelos's avatar
Cristina Vasconcelos committed
85
  backbone_features = backbone(tf.keras.Input(input_specs.shape[1:]))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
86

Abdullah Rashwan's avatar
Abdullah Rashwan committed
87
88
89
90
91
  if not decoder:
    decoder = decoders.factory.build_decoder(
        input_specs=backbone.output_specs,
        model_config=model_config,
        l2_regularizer=l2_regularizer)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

  rpn_head_config = model_config.rpn_head
  roi_generator_config = model_config.roi_generator
  roi_sampler_config = model_config.roi_sampler
  roi_aligner_config = model_config.roi_aligner
  detection_head_config = model_config.detection_head
  generator_config = model_config.detection_generator
  num_anchors_per_location = (
      len(model_config.anchor.aspect_ratios) * model_config.anchor.num_scales)

  rpn_head = dense_prediction_heads.RPNHead(
      min_level=model_config.min_level,
      max_level=model_config.max_level,
      num_anchors_per_location=num_anchors_per_location,
      num_convs=rpn_head_config.num_convs,
      num_filters=rpn_head_config.num_filters,
      use_separable_conv=rpn_head_config.use_separable_conv,
      activation=norm_activation_config.activation,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer)

  detection_head = instance_heads.DetectionHead(
      num_classes=model_config.num_classes,
      num_convs=detection_head_config.num_convs,
      num_filters=detection_head_config.num_filters,
      use_separable_conv=detection_head_config.use_separable_conv,
      num_fcs=detection_head_config.num_fcs,
      fc_dims=detection_head_config.fc_dims,
Xianzhi Du's avatar
Xianzhi Du committed
122
      class_agnostic_bbox_pred=detection_head_config.class_agnostic_bbox_pred,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
123
124
125
126
      activation=norm_activation_config.activation,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
Xianzhi Du's avatar
Xianzhi Du committed
127
128
      kernel_regularizer=l2_regularizer,
      name='detection_head')
Cristina Vasconcelos's avatar
Cristina Vasconcelos committed
129
130
131
132
133

  if decoder:
    decoder_features = decoder(backbone_features)
    rpn_head(decoder_features)

Xianzhi Du's avatar
Xianzhi Du committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
  if roi_sampler_config.cascade_iou_thresholds:
    detection_head_cascade = [detection_head]
    for cascade_num in range(len(roi_sampler_config.cascade_iou_thresholds)):
      detection_head = instance_heads.DetectionHead(
          num_classes=model_config.num_classes,
          num_convs=detection_head_config.num_convs,
          num_filters=detection_head_config.num_filters,
          use_separable_conv=detection_head_config.use_separable_conv,
          num_fcs=detection_head_config.num_fcs,
          fc_dims=detection_head_config.fc_dims,
          class_agnostic_bbox_pred=detection_head_config
          .class_agnostic_bbox_pred,
          activation=norm_activation_config.activation,
          use_sync_bn=norm_activation_config.use_sync_bn,
          norm_momentum=norm_activation_config.norm_momentum,
          norm_epsilon=norm_activation_config.norm_epsilon,
          kernel_regularizer=l2_regularizer,
          name='detection_head_{}'.format(cascade_num + 1))
Cristina Vasconcelos's avatar
Cristina Vasconcelos committed
152

Xianzhi Du's avatar
Xianzhi Du committed
153
154
      detection_head_cascade.append(detection_head)
    detection_head = detection_head_cascade
Abdullah Rashwan's avatar
Abdullah Rashwan committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

  roi_generator_obj = roi_generator.MultilevelROIGenerator(
      pre_nms_top_k=roi_generator_config.pre_nms_top_k,
      pre_nms_score_threshold=roi_generator_config.pre_nms_score_threshold,
      pre_nms_min_size_threshold=(
          roi_generator_config.pre_nms_min_size_threshold),
      nms_iou_threshold=roi_generator_config.nms_iou_threshold,
      num_proposals=roi_generator_config.num_proposals,
      test_pre_nms_top_k=roi_generator_config.test_pre_nms_top_k,
      test_pre_nms_score_threshold=(
          roi_generator_config.test_pre_nms_score_threshold),
      test_pre_nms_min_size_threshold=(
          roi_generator_config.test_pre_nms_min_size_threshold),
      test_nms_iou_threshold=roi_generator_config.test_nms_iou_threshold,
      test_num_proposals=roi_generator_config.test_num_proposals,
      use_batched_nms=roi_generator_config.use_batched_nms)

Xianzhi Du's avatar
Xianzhi Du committed
172
  roi_sampler_cascade = []
Abdullah Rashwan's avatar
Abdullah Rashwan committed
173
174
175
176
177
178
179
180
181
  roi_sampler_obj = roi_sampler.ROISampler(
      mix_gt_boxes=roi_sampler_config.mix_gt_boxes,
      num_sampled_rois=roi_sampler_config.num_sampled_rois,
      foreground_fraction=roi_sampler_config.foreground_fraction,
      foreground_iou_threshold=roi_sampler_config.foreground_iou_threshold,
      background_iou_high_threshold=(
          roi_sampler_config.background_iou_high_threshold),
      background_iou_low_threshold=(
          roi_sampler_config.background_iou_low_threshold))
Xianzhi Du's avatar
Xianzhi Du committed
182
183
184
185
186
187
188
189
190
191
192
193
  roi_sampler_cascade.append(roi_sampler_obj)
  # Initialize addtional roi simplers for cascade heads.
  if roi_sampler_config.cascade_iou_thresholds:
    for iou in roi_sampler_config.cascade_iou_thresholds:
      roi_sampler_obj = roi_sampler.ROISampler(
          mix_gt_boxes=False,
          num_sampled_rois=roi_sampler_config.num_sampled_rois,
          foreground_iou_threshold=iou,
          background_iou_high_threshold=iou,
          background_iou_low_threshold=0.0,
          skip_subsampling=True)
      roi_sampler_cascade.append(roi_sampler_obj)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
194
195
196
197
198
199

  roi_aligner_obj = roi_aligner.MultilevelROIAligner(
      crop_size=roi_aligner_config.crop_size,
      sample_offset=roi_aligner_config.sample_offset)

  detection_generator_obj = detection_generator.DetectionGenerator(
Fan Yang's avatar
Fan Yang committed
200
      apply_nms=generator_config.apply_nms,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
201
202
203
204
      pre_nms_top_k=generator_config.pre_nms_top_k,
      pre_nms_score_threshold=generator_config.pre_nms_score_threshold,
      nms_iou_threshold=generator_config.nms_iou_threshold,
      max_num_detections=generator_config.max_num_detections,
Xianzhi Du's avatar
Xianzhi Du committed
205
      nms_version=generator_config.nms_version,
Xianzhi Du's avatar
Xianzhi Du committed
206
207
      use_cpu_nms=generator_config.use_cpu_nms,
      soft_nms_sigma=generator_config.soft_nms_sigma)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
208
209
210
211
212
213
214
215
216
217
218

  if model_config.include_mask:
    mask_head = instance_heads.MaskHead(
        num_classes=model_config.num_classes,
        upsample_factor=model_config.mask_head.upsample_factor,
        num_convs=model_config.mask_head.num_convs,
        num_filters=model_config.mask_head.num_filters,
        use_separable_conv=model_config.mask_head.use_separable_conv,
        activation=model_config.norm_activation.activation,
        norm_momentum=model_config.norm_activation.norm_momentum,
        norm_epsilon=model_config.norm_activation.norm_epsilon,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
219
220
        kernel_regularizer=l2_regularizer,
        class_agnostic=model_config.mask_head.class_agnostic)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

    mask_sampler_obj = mask_sampler.MaskSampler(
        mask_target_size=(
            model_config.mask_roi_aligner.crop_size *
            model_config.mask_head.upsample_factor),
        num_sampled_masks=model_config.mask_sampler.num_sampled_masks)

    mask_roi_aligner_obj = roi_aligner.MultilevelROIAligner(
        crop_size=model_config.mask_roi_aligner.crop_size,
        sample_offset=model_config.mask_roi_aligner.sample_offset)
  else:
    mask_head = None
    mask_sampler_obj = None
    mask_roi_aligner_obj = None

  model = maskrcnn_model.MaskRCNNModel(
      backbone=backbone,
      decoder=decoder,
      rpn_head=rpn_head,
      detection_head=detection_head,
      roi_generator=roi_generator_obj,
Xianzhi Du's avatar
Xianzhi Du committed
242
      roi_sampler=roi_sampler_cascade,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
243
244
245
246
      roi_aligner=roi_aligner_obj,
      detection_generator=detection_generator_obj,
      mask_head=mask_head,
      mask_sampler=mask_sampler_obj,
Xianzhi Du's avatar
Xianzhi Du committed
247
248
      mask_roi_aligner=mask_roi_aligner_obj,
      class_agnostic_bbox_pred=detection_head_config.class_agnostic_bbox_pred,
249
250
251
252
253
254
      cascade_class_ensemble=detection_head_config.cascade_class_ensemble,
      min_level=model_config.min_level,
      max_level=model_config.max_level,
      num_scales=model_config.anchor.num_scales,
      aspect_ratios=model_config.anchor.aspect_ratios,
      anchor_size=model_config.anchor.anchor_size)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
255
256
257
  return model


Fan Yang's avatar
Fan Yang committed
258
259
260
def build_retinanet(
    input_specs: tf.keras.layers.InputSpec,
    model_config: retinanet_cfg.RetinaNet,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
261
262
263
264
    l2_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
    backbone: Optional[tf.keras.Model] = None,
    decoder: Optional[tf.keras.regularizers.Regularizer] = None
) -> tf.keras.Model:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
265
  """Builds RetinaNet model."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
266
  norm_activation_config = model_config.norm_activation
Abdullah Rashwan's avatar
Abdullah Rashwan committed
267
268
269
270
271
272
  if not backbone:
    backbone = backbones.factory.build_backbone(
        input_specs=input_specs,
        backbone_config=model_config.backbone,
        norm_activation_config=norm_activation_config,
        l2_regularizer=l2_regularizer)
Cristina Vasconcelos's avatar
Cristina Vasconcelos committed
273
  backbone_features = backbone(tf.keras.Input(input_specs.shape[1:]))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
274

Abdullah Rashwan's avatar
Abdullah Rashwan committed
275
276
277
278
279
  if not decoder:
    decoder = decoders.factory.build_decoder(
        input_specs=backbone.output_specs,
        model_config=model_config,
        l2_regularizer=l2_regularizer)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
280
281
282
283
284
285
286
287
288
289
290
291
292

  head_config = model_config.head
  generator_config = model_config.detection_generator
  num_anchors_per_location = (
      len(model_config.anchor.aspect_ratios) * model_config.anchor.num_scales)

  head = dense_prediction_heads.RetinaNetHead(
      min_level=model_config.min_level,
      max_level=model_config.max_level,
      num_classes=model_config.num_classes,
      num_anchors_per_location=num_anchors_per_location,
      num_convs=head_config.num_convs,
      num_filters=head_config.num_filters,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
293
294
295
      attribute_heads=[
          cfg.as_dict() for cfg in (head_config.attribute_heads or [])
      ],
Abdullah Rashwan's avatar
Abdullah Rashwan committed
296
297
298
299
300
301
302
      use_separable_conv=head_config.use_separable_conv,
      activation=norm_activation_config.activation,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer)

Cristina Vasconcelos's avatar
Cristina Vasconcelos committed
303
304
305
306
307
  # Builds decoder and head so that their trainable weights are initialized
  if decoder:
    decoder_features = decoder(backbone_features)
    _ = head(decoder_features)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
308
  detection_generator_obj = detection_generator.MultilevelDetectionGenerator(
Fan Yang's avatar
Fan Yang committed
309
      apply_nms=generator_config.apply_nms,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
310
311
312
313
      pre_nms_top_k=generator_config.pre_nms_top_k,
      pre_nms_score_threshold=generator_config.pre_nms_score_threshold,
      nms_iou_threshold=generator_config.nms_iou_threshold,
      max_num_detections=generator_config.max_num_detections,
Xianzhi Du's avatar
Xianzhi Du committed
314
      nms_version=generator_config.nms_version,
Xianzhi Du's avatar
Xianzhi Du committed
315
316
      use_cpu_nms=generator_config.use_cpu_nms,
      soft_nms_sigma=generator_config.soft_nms_sigma)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
317
318

  model = retinanet_model.RetinaNetModel(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
319
320
321
322
323
324
325
326
327
      backbone,
      decoder,
      head,
      detection_generator_obj,
      min_level=model_config.min_level,
      max_level=model_config.max_level,
      num_scales=model_config.anchor.num_scales,
      aspect_ratios=model_config.anchor.aspect_ratios,
      anchor_size=model_config.anchor.anchor_size)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
328
  return model
Abdullah Rashwan's avatar
Abdullah Rashwan committed
329
330
331
332


def build_segmentation_model(
    input_specs: tf.keras.layers.InputSpec,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
333
    model_config: segmentation_cfg.SemanticSegmentationModel,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
334
335
336
337
    l2_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
    backbone: Optional[tf.keras.regularizers.Regularizer] = None,
    decoder: Optional[tf.keras.regularizers.Regularizer] = None
) -> tf.keras.Model:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
338
  """Builds Segmentation model."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
339
  norm_activation_config = model_config.norm_activation
Abdullah Rashwan's avatar
Abdullah Rashwan committed
340
341
342
343
344
345
346
347
348
349
350
351
  if not backbone:
    backbone = backbones.factory.build_backbone(
        input_specs=input_specs,
        backbone_config=model_config.backbone,
        norm_activation_config=norm_activation_config,
        l2_regularizer=l2_regularizer)

  if not decoder:
    decoder = decoders.factory.build_decoder(
        input_specs=backbone.output_specs,
        model_config=model_config,
        l2_regularizer=l2_regularizer)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
352
353
354
355
356
357
358

  head_config = model_config.head

  head = segmentation_heads.SegmentationHead(
      num_classes=model_config.num_classes,
      level=head_config.level,
      num_convs=head_config.num_convs,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
359
      prediction_kernel_size=head_config.prediction_kernel_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
360
      num_filters=head_config.num_filters,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
361
      use_depthwise_convolution=head_config.use_depthwise_convolution,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
362
      upsample_factor=head_config.upsample_factor,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
363
364
365
      feature_fusion=head_config.feature_fusion,
      low_level=head_config.low_level,
      low_level_num_filters=head_config.low_level_num_filters,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
366
367
368
369
370
371
372
373
      activation=norm_activation_config.activation,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer)

  model = segmentation_model.SegmentationModel(backbone, decoder, head)
  return model